Project description:Global warming has shifted climate zones poleward or upward. However, understanding the responses and mechanism of microbial community structure and functions relevant to natural climate zone succession is challenged by the high complexity of microbial communities. Here, we examined soil microbial community in three broadleaved forests located in the Wulu Mountain (WLM, temperate climate), Funiu Mountain (FNM, at the border of temperate and subtropical climate zones), or Shennongjia Mountain (SNJ, subtropical climate).Soils were characterized for geochemistry, Illumina sequencing was used to determine microbial taxonomic communities and GeoChips 5.0 were used to determine microbial functional genes.
Project description:We analyzed global transcriptional changes in both shoots and roots of root-flooded Arabidopsis seedlings by microarrays. We also interpreted the significance of the systemic communication between roots and shoots by functional classification of affected genes. We performed genetic analysis with an ethylene signaling mutant, ein2-5, to correlate systemic flooding responses with ethylene signaling. We identified a class of genes that were up- or downregulated in shoots, but not affected in roots, under hypoxic conditions. A comprehensive managing program of carbohydrate metabolism was observed, providing an example of how systemic communications might facilitate the survival of plants under flooding. A proportion of long-distance hypoxic regulation was altered in ein2-5.
Project description:The diversity and environmental distribution of the nosZ gene, which encodes the enzyme responsible for the consumption of nitrous oxide, was investigated in marine and terrestrial environments using a functional gene microarray. The microbial communities represented by the nosZ gene probes showed strong biogeographical separation, with communities from surface ocean waters and agricultural soils significantly different from each other and from those in oceanic oxygen minimum zones. Atypical nosZ genes, usually associated with incomplete denitrification pathways, were detected in all the environments, including surface ocean waters. The abundance of nosZ genes, as estimated by quantitative PCR, was highest in the agricultural soils and lowest in surface ocean waters.