Project description:Analysis of the genome-wide DNA methylation pattern of Botrytis cinerea. Results provide new and important information that DNA methylation is critical for pathogenicity and development of Botrytis cinerea by regulating gene expression.
Project description:Analysis of the genome-wide DNA methylation pattern of Botrytis cinerea. Results provide new and important information that DNA methylation is critical for pathogenicity and development of Botrytis cinerea by regulating gene expression.
Project description:The Arabidopsis thaliana mutant wrky33 is highly susceptible to the necrotrophic fungus Botrytis cinerea. We identified by ChIP-seq >1680 high-confidence WRKY33 binding sites associated with 1576 genes within the Arabidopsis genome, with all of them being dependent on rapid activation of WRKY33 expression by Botrytis cinerea strain 2100. Genome-wide transcriptional analysis defined 318 genes as direct functional targets at 14 h post inoculation. Comparison between resistant wild-type Columbia-0 and susceptible wrky33 mutant plants revealed that expression of 75% of all WRKY33 regulated targets were down-regulated upon infection, indicating that WRKY33 predominately acts as a repressor. However, WRKY33 appears to possess dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. Our genome-wide analysis confirmed known WRKY33 targets involved in ethylene and jasmonic acid hormone signaling and phytoalexin biosynthesis, but also uncovered a previously unknown role of abscisic acid (ABA) biosynthesis in the complex regulatory circuitry affecting resistance towards Botrytis. Analysis of transgenic plants expressing WRKY33-HA under its native promoter post inoculation with spores of Botrytis cinerea 2100
Project description:To screen Botrytis genes activated in infection process, we performed gene expression profiling analysis using data obtained from RNA-seq of Botrytis cinerea cultured in vitro or infecting Arabidopsis leaves.