Project description:We reported a Concanavalin A-based Barcoding Strategy (CASB) for single-cell and single-nucleus sample multiplexing, which could be followed by different single-cell sequencing techniques. The method involves minimal sample processing, thereby preserving intact transcriptomic or epigenomic patterns. Besides sample multiplexing, the CASB could further improve data quality through doublet identification.
Project description:To explain enhanced biofilm formation and increased dissemination of S. epidermidis in mixed-species biofilms, microarrays were used to explore differential gene expression of S. epidermidis in mixed-species biofilms. One sample from single species biofilm (S1) and mixed-species biofilm (SC2) were excluded from analyses for outliers. We observed upregulation (2.7%) and down regulation (6%) of S. epidermidis genes in mixed-species biofilms. Autolysis repressors lrgA and lrgB were down regulated 36-fold and 27-fold respectively and was associated with increased eDNA possibly due to enhanced autolysis in mixed-species biofilms. These data suggest that bacterial autolysis and release of eDNA in the biofilm matrix may be responsible for enhancement and dissemination of mixed-species biofilms of S. epidermidis and C. albicans.
Project description:Sample multiplexed scRNA-seq is a promising strategy to overcome current barriers in high cost and potential technical variations by multiple scRNA-seq tests. In this study, we developed a highly efficienct novel sample barcode labeling method using DNA-encoded Lipid Nanoparticles ('Nanocoding') that could label cells with minimal dependence on their type or sample conditions. This method provids a roubust and general protocol for sample barcoding and multiplexing in scRNA-seq. We demonstrated the performance of Nanocoding through three scRNA-seq studies, which include: 1. mouse spleen cells mix (one dataset including 6 mouse spleen tissues samples); 2. HeLa-mouse Stromal Vascular Fraction(SVF) cells mix (one dataset containing mixed HeLa cell and SVF cell); 3. Aged-Young SVF cells mix (one dataset containing two SVF samples) tests. These studies showcased the biomodal distribution of barcode counts in different models with high signal-to-background ratio, as well as pan-cell labeling activity for efficient and accurate sample-multiplexing. By using Nanocoding, we profiled obsity and age related change in lipid metabolism associated genes or inflammatory related features, in various cell types from spleen or adipose tissues.