Project description:Black corals, ecologically important cnidarians found from shallow to deep ocean depths, form a strong yet flexible skeleton of sclerotized chitin and other biomolecules including proteins. The structure and mechanical properties of the chitin component of the skeleton have been well-characterized. However, the protein component has remained a mystery. Here we used liquid chromatography-tandem mass spectrometry to sequence proteins extracted from two species of common Red Sea black corals following either one or two cleaning steps. We detected hundreds of proteins between the two corals, nearly 70 of which are each others’ reciprocal best BLAST hit. Unlike stony corals, only a few of the detected proteins were moderately acidic (biased toward aspartic and/or glutamic acid residues) suggesting less of a role for these types of proteins in black coral skeleton formation as compared to stony corals. No distinct chitin binding domains were found in the proteins, but proteins annotated as having a role in protein and chitin modifications were detected. Our results support the integral role of proteins in black coral skeleton formation, structure, and function.
Project description:Purpose: There is a dearth of knowledge regarding the molecular pathology of growth anomaly in corals. We investigated the gene expression profile of Montipora capitata metatranscriptomes from healthy and diseased (growth anomaly) coral colonies to elucidate differentially expressed genes. Methods: mRNA profiles of coral tissue (including symbionts) were generated from three different tissue states: healthy, affected and unaffected. Healthy tissue was collected from coral colonies not affected by growth anomaly. Affected tissue was collected from coral growth anomaly lesions. Unaffected tissue was collected from coral colonies affected by growth anomaly.
Project description:Corals rely on a symbiosis with dinoflagellate algae (Symbiodinium spp.) to thrive in nutrient poor tropical oceans. However, the coral-algal symbiosis can break down during bleaching events, potentially leading to coral death. While genome-wide expression studies have shown the genes associated with the breakdown of this partnership, the full conglomerate of genes responsible for the establishment and maintenance of a healthy symbiosis remains unknown. Results from previous studies suggested little transcriptomic change associated with the establishment of symbiosis. In order to elucidate the transcriptomic response of the coral host in the presence of its associated symbiont, we utilized a comparative framework. Post-metamorphic aposymbiotic coral polyps of Orbicella faveolata were compared to symbiotic coral polyps 9 days after metamorphosis and the subsequent differential gene expression between control and treatment was quantified using cDNA microarray technology. Coral polyps exhibited differential expression of genes associated with nutrient metabolism and development, providing insight into pathways turned as a result of symbiosis driving early polyp growth. Furthermore, genes associated with lysosomal fusion were also upregulated, suggesting host regulation of symbiont densities soon after infection.
Project description:Heat-evolved Symbiodiniaceae can improve the physiological performances of their coral host under heat stress, but their gene expression responses to heat remained unknown. We explore here the transcriptomic basis of differential thermal stress responses between in hospite wild-type and heat-evolved Cladocopium proliferum strains and their coral host Platygyra daedealea.
Project description:A mutualistic relationship between reef-building corals and endosymbiotic algae (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. If, and to what extent, differences in algal symbiont clade contents can exert effects on the coral host transcriptome is currently unknown. In this study, we monitored algal physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered coral fragments using a custom cDNA gene expression microarray. Combining these analyses with results from algal and host genotyping revealed a striking symbiont effect on both the acclimated coral host transcriptome and the magnitude of the thermal stress response. This is the first study that links coral host transcriptomic patterns to the clade content of their algal symbiont community. Our data provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-algal partnerships.
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response, time course, coral bleaching Time course with 4 time points and 4 biological replicates per time point. Each biological replicate at each time point was hybridized to a pooled reference control sample containing RNA from all control non-heat-stressed coral fragments.
Project description:The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographic scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a cDNA microarray containing 1,310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. We also identified differentially expressed genes during a time course experiment with four time points across nine days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca2+ homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first large-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca2+ homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis. Keywords: thermal stress response; coral bleaching 5 control and 5 heat-stressed RNA samples were hybridized in a 5-replicate dye-swap design (10 total hyb's).