Project description:Microarray analysis of 28 brain metastasis samples from lung adenocarcinoma patients. 28 brain metastasis samples: 19 from Marc Ladanyi 9 from William L. Gerald
Project description:41 lung adenocarcinoma from never-smokers hybridized on Illumina SNP arrays on 13 HumanCNV370-Quadv3 chips. High-resolution array comparative genomic hybridization analysis of lung adenocarcinoma in 41 never smokers for identification of new minimal common regions (MCR) of gain or loss. The SNP array analysis validated copy-number aberrations and revealed that RB1 and WRN were altered by recurrent copy-neutral loss of heterozygosity.The present study has uncovered new aberrations containing cancer genes. The oncogene FUS is a candidate gene in the 16p region that is frequently gained in never smokers. Multiple genetic pathways defined by gains of MYC, deletions of RB1 and WRN or gains on 7p and 7q are involved in lung adenocarcinoma in never smokers. A 'Cartes d'Identite des Tumeurs' (CIT) project from the French National League Against Cancer (http://cit.ligue-cancer.net) 41 samples hybridized on Illumina SNP arrays. Submitter : Fabien PETEL petelf@ligue-cancer.net . Project leader : Pr Pierre FOURET pierre.fouret@psl.aphp.fr
Project description:Brain metastasis developed in nearly 40% of lung adenocarcinoma (LUAD) patients diagnosed with distant metastasis. There is lack of transcriptomic data of brain lesions from human lung adenocarcinoma patients. As part of the project to understanding the tumor microenvironment in brain metastasis of LUAD patients, we performed bulk RNA analysis on brain metastases from 6 LUAD patients. In order to understand the tumor intrinsic factors that potential shape the tumor microenvironment, we compared these data with bulk RNA sequencing data from 14 early stage and 11 late stage primary LUAD tumor from TCGA database. Pathway expression analysis showed a downregulation of pro-inflammatory signals in brain metastasis and upregulation of DNA synthesis and oxidative phosphorylation pathways related to rapid proliferation in brain lesions.
2019-12-10 | GSE141685 | GEO
Project description:Brain metastasis of primary lung adenocarcinoma
Project description:Genome wide DNA methylation profiling of brain metastasis from colorectal and lung cancer. The Illumina Infinium MethylationEPIC was used to obtain DNA methylation profiles across approximately 850,000 CpGs in brain metastasis samples. Samples included 1 breast ductal invasive carcinoma, 4 colon adenocarcinoma, 1 melanoma, 1 multiple mieloma, 7 non small cell lung cancer adenocarcinoma, 3 non small cell lung cancer G3, 4 non small cell lung cancer SCC, 1 prostate cancer adenocarcinoma and 1 serous carcinoma.
Project description:Brain metastases are common in lung adenocarcinoma (LUAD) patients, and by far, the metastasis mechanisms are not fully understood. We performed a comprehensive single-cell level transcriptomic analysis on one LUAD patient with CTC, primary tumor tissue and metastatic tumor tissue using scRNA-seq approach to identify metastasis related biomarkers. Further scRNA-seq were performed on 7 patients to validate the cancer metastatic hallmark. with single cells collected from either metastatic or primary LUAD tissues. we obtained a more comprehensive picture over lung cancer metastasis in the single-cell level, giving a new perspective to the role of RAC1 in the LUAD brain metastasis, and related pathways to participate in the metastasis process.
Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma.
Project description:Lung cancer is the leading cause of cancer death worldwide. Brain metastasis is a major cause of morbidity and mortality in lung cancer. CDH2 (N-cadherin, a mesenchymal marker in epithelial-mesenchymal transition) and ADAM9 (a member of type I transmembrane proteins) have been reported relating to lung cancer brain metastasis, however, it is still not clear whether any interaction between them to mediate lung cancer brain metastasis. Since microRNAs were discovered to regulate many biological functions and disease processes (e.g., cancer) by down-regulating their target genes, microRNA microarrays were used to identify ADAM9 regulated miRNAs that target CDH2 in aggressive lung cancer cells. Luciferase assays and immunoblotting proved that CDH2 was a target gene of miR-218. The expression of miR-218 was generated from pri-mir-218-1, located in SLIT2, in low invasive lung adenocarcinoma while it was inhibited in aggressive lung adenocarcinoma. Down-regulation of ADAM9 could up-regulate SLIT2 and miR-218, thus down-regulate CDH2 expression. This study elucidated the mechanism of ADAM9 activating CDH2 may be due to release the inhibition of miR-218 on CDH2 in lung adenocarcinoma. For each of the cell lines bm#2, bm#7, and F4, one microarray was analyzed.