Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces.
Project description:Arthrobacter chlorophenolicus A6 is a 4-chlorophenol degrading soil bacterium with high phyllosphere colonization capacity. Till now the genetic basis for the phyllosphere competency of Arthrobacter or other pollutant-degrading bacteria is uncertain. We investigated global gene expression profile of A. chlorophenolicus grown in the phyllosphere of common bean (Phaseolus vulgaris) compared to growth on agar surfaces. We designed transcriptome arrays and investigated which genes had different transcript levels in the phyllosphere of common bean (Phaseolus vulgaris) as compared to agar surfaces. Since water availability is considered an important factor in phyllosphere survival and activity, we included both high and low relative humidity treatments for the phyllosphere-grown cells. In addition, we determined the expression profile under pollutant exposure by the inclusion of two agar surface treatments, i.e. with and without 4-chlorophenol.
Project description:Plants are colonized by a variety of microorganisms, the plant microbiota. In the phyllosphere, the above-ground parts of plants, bacteria are the most abundant inhabitants. Most of these microorganisms are not pathogenic and the plant responses to commensals or to pathogen infection in the presence of commensals are not well understood. We report the Arabidopsis leaf transcriptome after 3 to 4 weeks of colonization by Methylobacterium extorquens PA1 and Sphingomonas melonis Fr1, representatives of two abundant genera in the phyllosphere, compared to axenic plants. In addition, we also sequenced the transcriptome of Arabidopsis 2 and 7 days after spray-infection with a low dose of P. syringae DC3000 and in combination with the commensals.
Project description:As the phyllosphere is a resource-limited niche, microbes have evolved different survival strategies by collaborating or competing with other organisms. This leads to the establishment of network structures which are stabilised by so-called microbial hub organisms. An already identified hub in the Arabidopsis thaliana phyllosphere is the oomycete pathogen Albugo laibachii. From wild Arabidopsis plants with white rust symptoms we isolated the basidiomycete yeast Moesziomyces albugensis, which is closely related to plant pathogenic smut fungi. It suppresses the infection of A. laibachii in lab experiments and inhibits growth of several bacterial phyllosphere members. The transcriptomic response of M. albugensis to presence of A. laibachii and bacterial SynCom members was investigated by using RNA sequencing. Interestingly, several genes encoding secretory proteins, mostly glycoside hydrolases and peptidases, are particularly induced upon interaction with A. laibachii.
Project description:This phase I trial evaluates the effects of RX-af01 in combination with toripalimab (PD-1 antibody), in treating patients with refractory advanced solid tumors, including melanoma, nasopharyngeal squamous carcinoma, esophageal squamous cell carcinoma, gastric adenocarcinoma, renal cell carcinoma, et al. RX-af01 is a kind of anti-tumor intestinal bacteria developed by our research group. Its main components are symbiotic bacteria from human intestine - Alisipes finegoldii (A. finegoldii.), which is a Gram negative anaerobic bacteria. Our previous research shows that A finegoldii. can significantly enhance the anti-tumor activity of PD-1 antibody in multiple mouse tumor models. Mechanism research shows that A finegoldii. can increase the infiltration of CD4 and CD8 positive immune cells in the tumor microenvironment, and enhances the anti-tumor activity of immune cells. The primary aim of this study is to explore the efficacy and safety of RX-af01 combined with PD-1 antibody in refractory advanced solid tumors.
Project description:Solar ultraviolet C(UV-C)radiation reaching the Earth’s surface is little due to the filtering effects of the stratospheric ozone layer. At present, artificial UV-C irradiation is utilized for different biological processes. Grape is a major fruit crop around the world. Research has shown that UV-C irradiation induced the biosynthesis of phenols. However, changes at the molecular level in response to UV-C and leading to these effects are poorly understood. To elucidate the effect of UV-C on expression of genes in grape and the response mechanism, transcript abundance of grape (Vitis vinifera L.) leaves was quantified using the Affymetrix Grape Genome oligonucleotide microarray (15,700 transcripts)