Project description:Incomplete antibiotic removal in pharmaceutical wastewater treatment plants (PWWTPs) could lead to the development and spread of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in the environment, posing a growing public health threat. In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. The N1 strain was highly resistant to ampicillin, cefazolin, chloramphenicol, tetracycline, and norfloxacin, while the N2 strain exhibited high resistance to ampicillin, chloramphenicol, and cefazolin. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity. Overall, this research provides insights into the potential risks posed by ARBs in pharmaceutical wastewater and emphasizes the need for further studies on their impact and mitigation strategies.
Project description:Antibiotic resistance genes (ARGs) and virulence genes (VGs) associated with bacterial pathogens are of great concern in WWTPs, while current knowledge of their profiles and co-occurrence patterns in different time intervals is barely sufficient. Moreover, the impacts of treatment process on ARG/VGs diversity also remain clear. To this end, this study was launched to address the differences of the ARG/VGs diversity between an oxidation ditch (OD) and an membrane bioreactor (MBR) and the co-occurrence patterns in different time intervals using a functional gene array-GeoChip.
Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.
Project description:Freshwater environments such as rivers receive effluent discharges from wastewater treatment plants, representing a potential hotspot for antibiotic resistance genes (ARGs). These effluents also contain low levels of different antimicrobials including biocides and antibiotics such as sulfonamides that can be frequently detected in rivers. The impact of such exposure on ARG prevalence and microbial diversity of riverine environment is unknown, so the aim of this study was to investigate the release of a sub-lethal concentration (<4 g L-1) of the sulfonamide compound sulfamethoxazole (SMX) on the river bacterial microbiome using a microflume system. This system was a semi-natural in-vitro microflume using river water (30 L) and sediment, with circulation to mimic river flow. A combination of ‘omics’ approaches were conducted to study the impact of SMX exposure on the microbiomes within the microflumes. Metaproteomics did not show differences in ARGs expression with SMX exposure in water.
Project description:In this study, two multiantibiotic-resistant bacteria, Ochrobactrum intermedium (N1) and Stenotrophomonas acidaminiphila (N2), were isolated from the sludge of a PWWTP in Guangzhou, China. Whole-genome sequencing revealed that N1 and N2 had genome sizes of 0.52 Mb and 0.37 Mb, respectively, and harbored 33 and 24 ARGs, respectively. The main resistance mechanism in the identified ARGs included efflux pumps, enzymatic degradation, and target bypass, with the N1 strain possessing more multidrug-resistant efflux pumps than the N2 strain (22 vs 12). This also accounts for the broader resistance spectrum of N1 than of N2 in antimicrobial susceptibility tests. Additionally, both genomes contain numerous mobile genetic elements (89 and 21 genes, respectively) and virulence factors (276 and 250 factors, respectively), suggesting their potential for horizontal transfer and pathogenicity.
Project description:We identified ARGs in a genome-wide manner, in fly brains as well as in sorted neurons; they included dopaminergic neurons (DA) and a subset of circadian-related neurons (PDF+ neurons).
Project description:Due to multi-generation domestication selection, farmed and wild Atlantic salmon diverge genetically, which raises concerns about potential genetic interactions among escaped farmed and wild populations and disrupts local adaptation through introgression. When farmed strains of distant geographic origin are used, it is unknown whether the genetic risks posed by escaped farmed fish will be greater than if more locally derived strains are used. Quantifying gene expression differences among divergent farmed, wild and F1 hybrids under controlled conditions is one of the ways to explore the consequences of hybridization. We compared the transcriptomes of late sac fry of a European (EO) farmed (“StofnFiskur”, Norwegian strain), a North American (NA) farmed (Saint John River, NB strain), a Newfoundland (NF) wild population with EO ancestry, and related F1 hybrids using 44K microarrays. Our findings indicate that the wild population showed greater transcriptome differences from the EO farmed strain than that of the NA farmed strain. We also found the largest differences in global gene expression between the two farmed strains. We detected fewer differentially expressed transcripts between F1 hybrids and domesticated/wild maternal strains. We also found that the differentially expressed genes between cross types over-represented GO terms associated with metabolism, development, growth, immune response, and redox homeostasis processes. These findings suggest that the interbreeding of escaped EO/NA farmed and NF wild population would alter gene transcription, and the consequences of hybridization would be greater from escaped EO farmed than NA farmed salmon, resulting in potential effects on the fitness of wild populations.
Project description:The cerebral cortex is a highly organized structure whose development depends on different progenitor cell types. These give rise to post-mitotic neurons that migrate across the developing cortical wall to their final positions in the cortical plate. Apical radial glia cells (aRGs) are the main progenitor type in early corticogenesis, responsible for the production of other progenitors, and regulating the final neuronal output. Abnormal behavior of aRG can severely impact corticogenesis resulting in cortical malformations. Mutations in the microtubule associated protein Eml1 lead to severe subcortical heterotopia, characterized by the presence of aberrantly located neurons beneath the normotopic cortex. Mutations in EML1/Eml1 have been reported in three families presenting severe atypical heterotopia, as well as in the Heterotopic cortex ‘HeCo’ spontaneous mouse mutant. In the latter, ectopically cycling aRGs were found cycling outside their normal proliferative ventricular zone (VZ) from early stages of corticogenesis (Croquelois et al., 2009, Kielar et al., 2014, Shaheen et al., 2017). Ectopic aRGs are likely to be responsible for the formation of the heterotopia. It is thus crucial to understand the role of Eml1 in aRGs to elucidate the physiological and pathological mechanisms causing aRGs to leave the VZ. The role of Eml1 in aRGs remains vastly unexplored. We have thus performed mass spectrometry with embryonic cortex lysates (E13.5) to shed light on the intracellular pathways and molecular mechanisms in which Eml1 could be involved. This data combined with other cell biology and biochemistry approaches will contribute to understand the role of this heterotopia protein at early stages of development.