Project description:Differentiated motor neurons from hiPSC derived from peripheral nerve fibroblasts of sporadic ALS patients and evaluated the gene expression profile by means microarray-linked to specific analysis tools. Two-condition experiment, ALS patients motor neurons vs. controls. Biological replicates: 3 ALS replicates, 3 control replicates.
Project description:To assess RNA regulation in the MN possessing mutated FUS-H517D gene. Fused in sarcoma/translated in liposarcoma (FUS) is a causative gene of familial amyotrophic lateral sclerosis (fALS). Mutated FUS causes accumulation of DNA damage stress and stress granule (SG) formation, etc., thereby motor neuron (MN) death. However, key molecular etiology of mutated FUS-dependent fALS (fALS-FUS) remains unclear. Here, Bayesian gene regulatory networks (GRN) calculated by Super-Computer with transcriptome data sets of induced pluripotent stem cell (iPSC)-derived MNs possessing mutated FUSH517D (FUSH517D MNs) and FUSWT identified TIMELESS, PRKDC and miR-125b-5p as "hub genes" which influence fALS-FUS GRNs. miR-125b-5p expression up-regulated in FUSH517D MNs, showed opposite correlations against FUS and TIMELESS mRNA levels as well as reported targets of miR-125b-5p. In addition, ectopic introduction of miR-125b-5p could suppress mRNA expression levels of FUS and TIMELESS in the cells. Furthermore, we found TIMELESS and PRKDC among key players of DNA damage stress response (DDR) were down-regulated in FUSH517D MNs and cellular model analysis validated DDR under impaired DNA-PK activity promoted cytosolic FUS mis-localization to SGs. Our GRNs based on iPSC models would reflect fALS-FUS molecular etiology.
Project description:Spinal muscular atrophy (SMA) is characterized by low levels of survival motor neuron (SMN) protein and loss of motor neurons (MN); however, the underlying mechanism that links SMN deficiency to selective motor neuronal dysfunction is still largely unknown. We present here, for the first time, a comprehensive quantitative mass spectrometry study that covers the development of iPSC-derived MNs from both healthy individuals and SMA patients. We show an altered proteomic signature in SMA already at early stages during MN differentiation, associated with ER to Golgi transport, mRNA splicing and protein ubiquitination, in line with known SMA phenotypes. These alterations in the SMA proteome increase further towards later stages of MN differentiation. In addition, we find differences in altered protein expression between SMA patients, which however, have similar biological functions. Finally, we highlight several known SMN-binding partners as well as proteins associated with ubiquitin-mediated proteolysis and evaluate their expression changes during MN differentiation. Altogether, our work provides a rich resource of molecular events during early stages of MN differentiation, containing potentially therapeutically interesting protein expression profiles for SMA.
Project description:In the central nervous system, motor neurons (MNs) are responsible for controlling essential body functions. Long noncoding RNAs have emerged overwhelmingly as gene expression regulators crucial at any step of MN differentiation and function. To uncover the function of the neuronal lncRNA nHOTAIRM1, abundantly expressed in spinal MNs, we generated, analysed and compared RNA-Seq data from wild type (WT) and nHOTAIRM1 knock-out (KO) MNs derived from iPSCs through a differentiaton protocol of 12 days
Project description:We compare transcriptomic profiles of human induced pluripotent stem cells (iPSCs), motor neurons (MNs) in vitro differentiated from iPSCs or human ESCs containing a HB9::GFP reporter for MNs, and human fetal spinal cords. The purpose of this comparison is to assess the extent of molecular similarities between in vitro differentiated MNs and in vivo fetal or adult spinal cord MNs. Data for adult spinal cord MNs are published from other studies: GSE3526, GSE19332, GSE20589, and GSE40438. Human induced pluripotent stem cells, pluripotent stem cell derived motor neurons, and fetal spinal cords for RNA extraction and hybridization on Affymetrix arrays.