Project description:The human gut is colonized by trillions of microorganisms that influence human health and disease through the metabolism of xenobiotics, including therapeutic drugs and antibiotics. The diversity and metabolic potential of the human gut microbiome have been extensively characterized, but it remains unclear which microorganisms are active and which perturbations can influence this activity. Here, we use flow cytometry, 16S rRNA gene sequencing, and metatranscriptomics to demonstrate that the human gut contains distinctive subsets of active and damaged microorganisms, primarily composed of Firmicutes, which display marked temporal variation. Short-term exposure to a panel of xenobiotics resulted in significant changes in the physiology and gene expression of this active microbiome. Xenobiotic-responsive genes were found across multiple bacterial phyla, encoding novel candidate proteins for antibiotic resistance, drug metabolism, and stress response. These results demonstrate the power of moving beyond DNA-based measurements of microbial communities to better understand their physiology and metabolism. RNA-Seq analysis of the human gut microbiome during exposure to antibiotics and therapeutic drugs.
Project description:Fire disturbances are becoming more common, more intense, and further-reaching across the globe, with consequences for ecosystem functioning. Importantly, fire can have strong effects on the soil microbiome, including community and functional changes after fire, but surprisingly little is known regarding the role of soil fire legacy in shaping responses to recent fire. To address this gap, we conducted a manipulative field experiment administering fire across 32 soils with varying fire legacies, including combinations of 1-7 historic fires and 1-33 years since most recent fire. We analyzed soil metatranscriptomes, determining for the first time how fire and fire legacy interactively affect metabolically-active soil taxa, the microbial regulation of important carbon (C), nitrogen (N) and phosphorus (P) cycling, expression of carbohydrate-cycling enzyme pathways, and functional gene co-expression networks. Experimental fire strongly downregulated fungal activity while upregulating many bacterial and archaeal phyla. Further, fire decreased soil capacity for microbial C and N cycling and P transport, and drastically rewired functional gene co-expression. Perhaps most importantly, we highlight a novel role of soil fire legacy in regulation of microbial C, N, and P responses to recent fire. We observed a greater number of functional genes responsive to the interactive effects of fire and fire legacy than those affected solely by recent fire, indicating that many functional genes respond to fire only under certain fire legacy contexts. Therefore, without incorporating fire legacy of soils, studies will miss important ways that fire shapes microbial roles in ecosystem functioning. Finally, we showed that fire caused significant downregulation of carbon metabolism and nutrient cycling genes in microbiomes under abnormal soil fire histories, producing a novel warning for the future: human manipulation of fire legacies, either indirectly through global change-induced fire intensification or directly through fire suppression, can negatively impact soil microbiome functional responses to new fires.
Project description:Purpose: Deconstructing the soil microbiome into reduced-complexity functional modules represents a novel method of microbiome analysis. The goals of this study are to confirm differences in transcriptomic patterns among five functional module consortia. Methods: mRNA profiles of 3 replicates each of functional module enrichments of soil inoculum in M9 media with either 1) xylose, 2) n-acetylglucosamine, 3) glucose and gentamycin, 4) xylan, or 5) pectin were generated by sequencing using an Illumina platform (GENEWIZ performed sequencing). Sequence reads that passed quality filters were aligned to a soil metagenome using Burrows Wheeler Aligner. Resulting SAM files were converted to raw reads using HTSeq, and annotated using Uniref90 or EGGNOG databases. Results: To reduce the size of the RNA-Seq counts table and increase its computational tractability, transcripts containing a minimum of 75 total counts, but no more than 3 zero counts, across the 15 samples were removed. The subsequent dataset was normalized using DESeq2, resulting in a dataset consisting of 6947 unique transcripts across the 15 samples, and 185,920,068 reads. We identified gene categories that were enriched in a sample type relative to the overall dataset using Fisher’s exact test. Conclusions: our dataset confirms that the functional module consortia generated from targeted enrichments of a starting soil inoculum had distinct functional trends by enrichment type.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning. We conducted in situ warming experiments for three years using open-top chambers (OTCs) at one sub-Antarctic (Falkland Islands, 52ºS) and two Antarctic locations (Signy and Anchorage Islands, 60ºS and 67ºS respectively) (see Supplementary Fig. 1 for a map). OTCs increased annual soil temperature by an average of 0.8°C (at a depth of 5 cm), resulting in 8-43% increase in positive-degree days annually and a decrease in freeze-thaw cycle frequency by an average of 15 cycles per year (8). At each location, we included densely vegetated and bare fell-field soils in the experimental design for a total of six environments. Densely vegetated and bare environments represent two contrasting environments for Antarctic soil microorganisms, with large differences in terms of C and N inputs to soils. Massively parallel pyrosequencing (Roche 454 GS FLX Titanium) of 16S rRNA gene amplicons was used to follow bacterial diversity and community composition [GenBank Accession Numbers: HM641909-HM744649], and functional gene microarrays (GeoChip 2.0)(11) were used to assess changes in functional gene distribution. Bacterial and fungal communities were also quantified using real-time PCR.
Project description:Because of severe abiotic limitations, Antarctic soils represent simplified ecosystems, where microorganisms are the principle drivers of nutrient cycling. This relative simplicity makes these ecosystems particularly vulnerable to perturbations, like global warming, and the Antarctic Peninsula is among the most rapidly warming regions on the planet. However, the consequences of the ongoing warming of Antarctica on microorganisms and the processes they mediate are unknown. Here, using 16S rRNA gene pyrosequencing and qPCR, we report a number of highly consistent changes in microbial community structure and abundance across very disparate sub-Antarctic and Antarctic environments following three years of experimental field warming (+ 0.5-2°C). Specifically, we found significant increases in the abundance of fungi and bacteria and in the Alphaproteobacteria-to-Acidobacteria ratio. These alterations were linked to a significant increase in soil respiration. Furthermore, the shifts toward generalist or opportunistic bacterial communities following warming weakened the linkage between bacterial diversity and functional diversity. Warming also increased the abundance of some organisms related to the N-cycle, detected as an increase in the relative abundance of nitrogenase genes via GeoChip microarray analyses. Our results demonstrate that soil microorganisms across a range of sub-Antarctic and Antarctic environments can respond consistently and rapidly to increasing temperatures, thereby potentially disrupting soil functioning.
Project description:Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies focused on how fire affects both the taxonomic and functional diversity of soil microbial communities, along with plant diversity and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects for a grassland ecosystem 9-months after an experimental fire at the Jasper Ridge Global Change Experiment (JRGCE) site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis indicating that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa were able to withstand the disturbance. In addition, fire decreased the relative abundances of most genes associated with C degradation and N cycling, implicating a slow-down of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated plant growth, likely enhancing plant-microbe competition for soil inorganic N. To synthesize our findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for the significantly higher soil respiration rates in burned sites. In conclusion, fire is well-documented to considerable alter the taxonomic and functional composition of soil microorganisms, along with the ecosystem functioning, thus arousing feedback of ecosystem responses to affect global climate.
Project description:For forty generations, two lines of White Leghorn chickens have been selected for high (HAS) or low (LAS) antibody response to a low dose injection of sheep red blood cells (SRBCs). Their gut is home to billons of microorganisms and the largest number of immune cells in the body; therefore, the objective of this experiment was to gain understanding of the ways the microbiome may influence the differential antibody response observed in these lines. We achieved this by characterizing the small intestinal microbiome of HAS and LAS birds, determining their functional microbiome profiles, and by using machine learning to identify microbes which best differentiate HAS from LAS and associating the abundance of those microbes with host gene expression. Microbiome sequencing reveals greater diversity in LAS but statistically higher abundance of several strains, particularly those of lactobacillus, in HAS. Enrichment of microbial metabolites implicated in immune response such as lactic acid, short chain fatty acids, amino acids, and vitamins were different between HAS and LAS. The
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.