Project description:To further development of our miRNA diagnostic approach to Kawasaki disease(KD), we have employed microRNA microarray expression profiling as a discovery platform to identify microRNAs as the potential biomarkers to rapidly diagnose Kawasaki disease. Pooled exosome of serum in equal amount from 5 healthy children, 5 KD patients and 5 KD patients after Intravenous immunoglobulin (IVIG) therapy were used for microRNA microarray analysis. MicroRNA profile of exosome from Kawasaki disease(KD) was analyzed by microRNA microarray analysis in 5 healthy children, 5 KD patients and 5 KD patients after IVIG therapy.
Project description:Genes that were consistently up-regulated in KD patients compared with healthy controls, and that showed over 2.0 or 3.0-fold differences by the comparison between the two groups in the mean expression levels were selected. Microarray analysis for PBMNCs of acute-phase KD patients was performed using an AceGene Human Oligo Chip 30K 1 Chip Version (Hitachi Software Engineering) that contains approximately 30,000 genes. In the study presented here, 3 cases of Kawasaki disease at acute phase,and 5 healthy controls,were used. The data with low signal-to-noise ratios (S/N<3) were not used for further analysis.
Project description:Kawasaki disease (KD) is considered the main contributor to acquired heart diseases in developed countries. However, the precise pathogenesis of KD remains unclear. Neutrophils played roles in KD. This study aimed to select hub genes in neutrophils in acute KD. mRNA microarray of neutrophils from four acute KD patients and three healthy controls was performed to screen differentially expressed mRNAs (DE-mRNAs). DE-mRNAs were analyzed and predicted by Gene Ontology (GO), Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction networks. Real time-PCR was finally conducted to confirm the reliability and validity of the expression level of DE-mRNAs from blood samples of healthy controls and KD patients in both acute and convalescent stage.
Project description:Clinical score and transcript abundance patterns identify Kawasaki disease patients who may benefit from addition of methylprednisolone. Intravenous immunoglobulin (IVIG) treatment-resistant patients are high risk of developing coronary artery lesions (CALs) with Kawasaki disease (KD). The IVIG-responsive (Group A; n = 6) and -resistant patients (Group B) were predicted before starting the initial treatment using the Egami scoring system, and randomly allocated a single-IVIG treatment group (Group B1; n = 6) or a IVIG-plus-methylprednisolone (IVMP) combined therapy group (Group B2; n = 5). We investigated transcript abundance in the leukocytes of those patients using microarray analysis. Results: five patients in Group A and 1 patient in Group B1 responded to initial IVIG treatment. All Group B2 patients responded to IVIP-plus-IVMP combined therapy. Prior to performing these treatments, those transcripts related to IVIG-resistance and to the development of CALs, such as IL1R, IL18R, oncostatin M, suppressor of cytokine signaling-3, S100A12 protein, carcinoembryonic antigen-related cell adhesion molecule-1, matrix metallopeptidase-9 and polycythemia rubra vera-1 were more abundant in Group B patients in comparison to Group A patients. Moreover, those transcripts in Group B2 patients were more profoundly and broadly suppressed than Group B1 patients after treatment. Conclusion: this study elucidated the molecular mechanism of the effectiveness of IVIG-plus-IVMP combined therapy. 34 samples of pre- and post-treatment in three groups consisting of predicted as IVIG-responsive patients, given single-IVIG treatment patients and IVIG-plus-IVMP combined therapy group in predicted as IVIG-resistant patients.
Project description:To further development of our miRNA diagnostic approach to Kawasaki disease(KD), we have employed microRNA microarray expression profiling as a discovery platform to identify microRNAs as the potential biomarkers to rapidly diagnose Kawasaki disease. Pooled exosome of serum in equal amount from 5 healthy children, 5 KD patients and 5 KD patients after Intravenous immunoglobulin (IVIG) therapy were used for microRNA microarray analysis.
Project description:In this study, we compared global gene expressions between pre- and post- intravenous immunoglobulin (IVIG) administration in nineteen Kawasaki disease (KD) patients. Peripheral blood mononuclear cells (PBMCs) obtained from nineteen patients before and after IVIG treatment was extracted using a PAXgene blood RNA isolation kit. Amplified cRNAs of each patient were analyzed using with Agilent Whole Human Genome Microarray 4x44K G4112F array.
Project description:Clinical score and transcript abundance patterns identify Kawasaki disease patients who may benefit from addition of methylprednisolone. Intravenous immunoglobulin (IVIG) treatment-resistant patients are high risk of developing coronary artery lesions (CALs) with Kawasaki disease (KD). The IVIG-responsive (Group A; n = 6) and -resistant patients (Group B) were predicted before starting the initial treatment using the Egami scoring system, and randomly allocated a single-IVIG treatment group (Group B1; n = 6) or a IVIG-plus-methylprednisolone (IVMP) combined therapy group (Group B2; n = 5). We investigated transcript abundance in the leukocytes of those patients using microarray analysis. Results: five patients in Group A and 1 patient in Group B1 responded to initial IVIG treatment. All Group B2 patients responded to IVIP-plus-IVMP combined therapy. Prior to performing these treatments, those transcripts related to IVIG-resistance and to the development of CALs, such as IL1R, IL18R, oncostatin M, suppressor of cytokine signaling-3, S100A12 protein, carcinoembryonic antigen-related cell adhesion molecule-1, matrix metallopeptidase-9 and polycythemia rubra vera-1 were more abundant in Group B patients in comparison to Group A patients. Moreover, those transcripts in Group B2 patients were more profoundly and broadly suppressed than Group B1 patients after treatment. Conclusion: this study elucidated the molecular mechanism of the effectiveness of IVIG-plus-IVMP combined therapy.
Project description:ABSTRACT Background. Acute Kawasaki disease (KD) is difficult to distinguish from other acute rash/fever illnesses, in part because the etiologic agent(s) and pathophysiology remain poorly characterized. As a result, diagnosis and critical therapies may be delayed. Methods. We used DNA microarrays to identify possible diagnostic features of KD. We compared gene expression patterns in the blood of 23 children with acute KD and 18 age-matched febrile children with three illnesses that resemble KD. Results. Genes associated with platelet and neutrophil activation were expressed at higher levels in KD patients than in patients with acute adenovirus infections or systemic adverse drug reactions but not in patients with scarlet fever; genes associated with B cell activation were also expressed at higher levels in KD patients than in controls. A striking absence of interferon-stimulated gene expression in the KD patients was confirmed in an independent cohort of KD subjects. We successfully predicted the diagnosis in 21 of 23 KD patients and 7 of 8 adenovirus patients using a set of 38 gene transcripts. Conclusions. These findings provide insight into the molecular features that distinguish KD from other febrile illnesses, and support the feasibility of developing novel diagnostic reagents for KD based on the host response. A disease state experiment design type is where the state of some disease such as infection, pathology, syndrome, etc is studied. Disease State: One of Kawasaki Disease (KD) or control (C) of Scarlet fever (C-sf), adenovirus infection (C-ai) or drug reaction (C-dr) disease_state_design
Project description:RNA was isolated from rectal biopsies from 190 pediatric patients undergoing diagnostic colonoscopy for inflammatory bowel diseases, including Crohn's disease and ulcerative colitis. Single-end, 75-bp sequencing was performed, and raw reads aligned to the human genome using Gencode v 24 as reference. We included 14085 protein-coding mRNA genes in downstream analyses, where cutoffs of fold change>1.5 and FDR<0.05 were considered significant.