Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed.
Project description:Welan gum is mainly produced by Sphingomonas sp. ATCC 31555 and has broad applications in industry such as that in cement production. Both carbon and nitrogen sources are essential for welan production. However, how nitrogen sources affect the metabolism and gene transcription of welan remains elusive. Here, we used next-generation sequencing RNA-seq to analyze the transcriptome of Sphingomonas sp. ATCC 31555 in the presence of inorganic or organic nitrogen sources. Enriched gene expression and pathway analysis suggest that organic nitrogen sources significantly enhanced the expression of genes in central metabolic pathways of Sphingomonas sp. ATCC 31555 and those critical for welan synthesis compared to that observed using inorganic nitrogen sources. The present study improves our understanding of the molecular mechanism underlying the use of nitrogen in welan synthesis in Sphingomonas sp., as well as provides an important transcriptome resource for Sphingomonas sp. in relation to nitrogen sources. Sphingomonas sp. ATCC 31555 strain (stored in our laboratory) was first seeded in an inoculum medium (20 g/L glucose, 3 g/L yeast extract, 3 g/L malt extract, and 5 g/L fish meal protein peptone, pH 7.0), and then cultured in a fermentation medium containing 40 g/L sucrose, 4.0 g/L nitrogen source, 0.6 g/L KH2PO4, and 0.2 g/L MgSO4.7H2O at 37°C. The nitrogen sources used in the present study were as follows: NaNO3 (4.0 g/L) as inorganic nitrogen (IN), beef extract (4.0 g/L) as organic nitrogen (ON), and NaNO3 (1.5 g/L) + beef extract (2.5 g/L) as complex nitrogen (CN). All cultivations were conducted in flasks with constant rotary shaking at 400â??1,000 rpm and 37°C.
Project description:Investigation of whole genome gene expression level in motile strain of Sphingomonas. sp A1 All flagellar genes in motile strain of Sphingomonas. sp A1 are highly transcribed. A two chip study using total RNA recovered from wild-type and motile strains of Sphingomonas. sp A1 grown in 0.5% alginate medium.
Project description:Investigation of whole genome gene expression level changes in Sphingomonas. sp A1 AlgO-deficient mutant grown on alginate compared with that on yeast extract AlgO is a possble transcriptional factor described in J. Bacteriol. (2000) 182(14):3998-4004 by Momma K, Okamoto M, Mishima Y, Mori S, Hashimoto W, and Murata K. A two chip study using total RNA recovered from two cultures of Sphingomonas. sp A1 AlgO-deficient mutant grown in 0.5% alginate medium and 0.5% yeast extract medium. Each chip measures the expression level of genes from Sphingomonas. sp A1.
Project description:M. smegmatis wild type and glnR deletion strains grown in nitrogen limiting conditions (1 mM ammonium sulphate nitrogen source). Samples taken 1 hour after nitrogen depletion from the media for each strain.
Project description:Corynebacterium glutamicum, a gram-positive soil bacterium used for the industrial production of amino acids such as L-glutamate and L-lysine, is able to use a number of different nitrogen sources, such as ammonium, urea, or creatinine. In this communication, we show that L-glutamine serves as an excellent nitrogen source for C. glutamicum and allows similar growth rates in glucose minimal medium as ammonium. A transcriptome comparison revealed a strong induction of the nitrogen starvation response when glutamine was used as nitrogen source. Subsequent growth experiments with a variety of mutants defective in nitrogen metabolism showed that glutamate synthase is crucial for glutamine utilization, while a putative glutaminase is dispensable under the experimental conditions used. The fact that the glutamate synthase encoding gltBD operon is under strict nitrogen control explains the necessity for induction of the nitrogen starvation response. The paradox situation that the nitrogen starvation response is induced although intracellular L-glutamine levels are high has implications on nitrogen sensing. In contrast to other gram-positive and gram-negative bacteria such as Bacillus subtilis, Salmonella typhimurium, and Klebsiella pneumoniae, a drop in glutamine concentration obviously does not serve as a nitrogen starvation signal in C. glutamicum. Three biological replicates were performed. To analyse how L-glutamine influences global gene expression when used as sole nitrogen source instead of ammonium, DNA microarray analyses were performed. For this purpose RNA was isolated from exponentially growing cells cultivated in CgXII medium containing glucose as carbon source and either L-glutamine or ammonium sulphate as nitrogen source.
Project description:To investigate the regulon of the novel transcriptional regulator TssR discovered in our study We then performed gene expression profiling analysis using data obtained from RNA-seq of wild type Azoarcus olearius sp. BH72 and tssR deleted mutant cultured under microaerobic conditions with additional ammonium
Project description:A heterotrophic ammonia-oxidizing bacterium Alcaligenes sp. HO-1 was isolated from the activated sludge of a bioreactor treating ammonia-rich piggery wastewater. The goal and objectives of this experiment are to analyze the transcriptome profiles of nitrogen-metabolism-related genes of Alcaligenes sp. HO-1 in response to ammonium stimulation over time and to find out potential genes involved in ammonia oxidation process. So the RNA-seq anaylsis was performed by setting up each time points (0, 3.5, 10, 22 hours) when strain HO-1 were exposed to ammonia. HO-1 was cultured with 83 mM succinate and 14 mM ammonium sulfate until ammonia was completely consumed and then another 14 mM of ammonium sulfate was added to the culture. Cells were harvested at 0 h, 3.5 h, 10 h and 22 h after the addition of ammonium sulfate. The sequencing data of RNAs obtained from strain HO-1 cells at each time was analyzed.
Project description:Background: Frankia sp. strains are actinobacteria that form N2-fixing root nodules on angiosperms. Several reference genome sequences are available enabling transcriptome studies in Frankia sp. Genomes from Frankia sp. strains differ markedly in size, a consequence proposed to be associated with a high number of indigenous transposases, more than 200 of which are found in Frankia sp. strain CcI3 used in this study. Because Frankia exhibits a high degree of cell heterogeneity as a consequence of its mycelial growth pattern, its transcriptome is likely to be quite sensitive to culture age. This study focuses on the behavior of the Frankia sp. strain CcI3 transcriptome as a function of nitrogen source and culture age. Results: To study global transcription in Frankia sp. CcI3 grown under different conditions, complete transcriptomes were determined using high throughput RNA deep sequencing. Samples varied by time (five days vs. three days) and by culture conditions (NH4+ added vs. N2 fixing). Assembly of millions of reads revealed more diversity of gene expression between five-day and three-day old cultures than between three day old cultures differing in nitrogen sources. Heat map analysis organized genes into groups that were expressed or repressed under the various conditions compared to median expression values. Twenty-one SNPs common to all three transcriptome samples were detected indicating culture heterogeneity in this slow-growing organism. Significantly higher expression of transposase ORFs was found in the five-day and N2-fixing cultures, suggesting that N starvation and culture aging provide conditions for on-going genome modification. Transposases have previously been proposed to participate in the creating the large number of gene duplication or deletion in host strains. Subsequent RT-qPCR experiments confirmed predicted elevated transposase expression levels indicated by the mRNA-seq data. Conclusions: The overall pattern of gene expression in aging cultures of CcI3 suggests significant cell heterogeneity even during normal growth on ammonia. The detection of abundant transcription of nif (nitrogen fixation) genes likely reflects the presence of anaerobic, N-depleted microsites in the growing mycelium of the culture, and the presence of significantly elevated transposase transcription during starvation indicates the continuing evolution of the Frankia sp. strain CcI3 genome, even in culture, especially under stressed conditions. These studies also sound a cautionary note when comparing the transcriptomes of Frankia grown in root nodules, where cell heterogeneity would be expected to be quite high. Detection of gene expression variance among Frankia HfpCci3 (Cci3) cells grown in ammonium chloride for three days, five days and HfpCci3 cells grown in nitrogen fixing conditions for three days using mRNA-seq