Project description:4plex_physco_2014-05 - ppmax2 response to gr24 - How does the Ppmax2 moss mutant respond to Strigolactone (GR24)? - Two moss genotypes are used: WT and the Ppmax2 mutant. Moss tissues are fragmented, then plated on medium (Petri dish with cellophane disks) and cultivated for 3 weeks. Moss tissues are then transfered for 6 hours on acetone-containing medium (control treatment, for WT and Ppmax2) or GR24 (1 microM, in acetone)-containing medium (for Ppmax2). After 6 hours, the moss tissues are collected, quickly forzen in liquid nitrogen. RNA are isolated using the Quiagen RNeasy Plant mini kit (including a RNase-free DNase treatment on column). Two similar experiments (T1 and T2) have been led.
Project description:High-throughput sequencing of endogenous small RNAs from the moss Physcomitrella patens. This dataset encompasses microRNAs and other small RNAs of ~20-24 nucleotides expressed in the moss P. patens. SAMPLES UPDATED JULY 9, 2007 TO INCLUDE DATA ON SEQUENCED SMALL RNAS THAT DO NOT MATCH THE P. PATENS GENOME Keywords: High throughput small RNA sequencing
Project description:Negatives effects induced by exposure to ultra-violet (UV) radiation are well known. Nevertheless the modes of action of UV radiation are not well understood, in particular in soil invertebrates. In the present work, the effects of two UV doses (mimicking worst case scenarios in earth crust) on gene expression profile of Enchytraeus crypticus (Enchytraeidae, Oligochaeta) were investigated using the high-throughput 4 x 44K microarray developed for the species.
Project description:Analysis of transcriptome in moss Physcomitrella patens CNGCb null mutant at 25 and 34 degrees C for 30 minutes. Results provide insight into role of CNGCb in acquired thermotolerance induced by non-lethal heat treatment. Typically at dawn of a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to timely develop a heat-shock response (HSR) and accumulate protective heat shock proteins (Hsps), in anticipation of upcoming harmful temperatures at mid-day. Here, we found that the CNGCb gene from Physcomitrella patens and its Arabidopsis ortholog CNGC2, encode for a component of cyclic nucleotide gated Ca2+ channels acting as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to a HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused altered Ca2+ signaling and a sustained Ca2+ influx. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermo-responsive Ca2+-channels in wild type cells. Deletion of CNGCb led to a total absence of one, and it increased the open probability of the remaining two thermo-responsive Ca2+ channels. Thus, both in Arabidopsis and moss, CNGC2 and CNGCb are expected to form with other related CNGCs, heteromeric Ca2+ channels in the plasma membrane that respond to mild increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance.
2012-03-06 | GSE36301 | GEO
Project description:Drought induced transcriptome of an Antarctic moss
Project description:Analysis of transcriptome in moss Physcomitrella patens CNGCb null mutant at 25 and 34 degrees C for 30 minutes. Results provide insight into role of CNGCb in acquired thermotolerance induced by non-lethal heat treatment. Typically at dawn of a hot summer day, land plants need precise molecular thermometers to sense harmless increments in the ambient temperature to timely develop a heat-shock response (HSR) and accumulate protective heat shock proteins (Hsps), in anticipation of upcoming harmful temperatures at mid-day. Here, we found that the CNGCb gene from Physcomitrella patens and its Arabidopsis ortholog CNGC2, encode for a component of cyclic nucleotide gated Ca2+ channels acting as the primary thermosensors of land plant cells. Disruption of CNGCb or CNGC2 produced a hyper-thermosensitive phenotype, giving rise to a HSR and acquired thermotolerance at significantly milder heat-priming treatments than in wild type plants. In an aequorin-expressing moss, CNGCb loss-of-function caused altered Ca2+ signaling and a sustained Ca2+ influx. Patch clamp recordings on moss protoplasts showed the presence of three distinct thermo-responsive Ca2+-channels in wild type cells. Deletion of CNGCb led to a total absence of one, and it increased the open probability of the remaining two thermo-responsive Ca2+ channels. Thus, both in Arabidopsis and moss, CNGC2 and CNGCb are expected to form with other related CNGCs, heteromeric Ca2+ channels in the plasma membrane that respond to mild increments in the ambient temperature by triggering an optimal HSR, leading to the onset of plant acquired thermotolerance. The WT moss tissues were heat-shocked for a half an hour at 34°C and 38°C and CNGCb at 25and 34°C followed by liquid nitrogen freezing. Total RNA was isolated using RNeasy Mini Kit (QIAGEN, Hilden, Germany) and two biological replicate samples for each treatment, were extracted. An Agilent-certified microarray service lab (MOgene, LC, St. Louis, MO, USA) was used to verify the integrity of the RNA and perform the microarray experiments. Two biological replicates were performed.
Project description:This project aimed to discover genes that regulate the transition from 2D to 3D growth in the moss Physcomitrella patens. Mutants were generated that failed to initiate 3D growth. Bulk segregant analysis was conducted to identify the causative genes. This experiment contains four samples - GdGFP, VxmCherry, WT-pool, Mt-pool.