Project description:We characterized changes of transposon and mRNA expressions in armi, rhino ,aub, ago3 mutants with respect to wild type using Affy tiling array. In most of these mutants, mRNA expressions were mostly unchanged but increased expressions was observed for many transposons indicating the role of these proteins in silencing transposons in Drosophila ovaries Keywords: Tiling array transcriptome profiling
Project description:Piwi-interacting RNAs (piRNAs) suppress transposon activity in animal germ cells. In the Drosophila ovary, primary Aubergine (Aub)-bound antisense piRNAs initiate the ping-pong cycle to produce secondary AGO3-bound sense piRNAs. This increases the number of secondary Aub-bound antisense piRNAs that can act to destroy transposon mRNAs. Here we show that Krimper (Krimp), a Tudor-domain protein, directly interacts with piRNA-free AGO3 to promote symmetrical dimethylarginine (sDMA) modification, ensuring sense piRNA-loading onto sDMA-modified AGO3. In aub mutant ovaries, AGO3 associates with ping-pong signature piRNAs, suggesting AGO3’s compatibility with primary piRNA loading. Krimp sequesters ectopically expressed AGO3 within Krimp bodies in cultured ovarian somatic cells (OSCs), in which only the primary piRNA pathway operates. Upon krimp-RNAi in OSCs, AGO3 loads with piRNAs, further showing the capacity of AGO3 for primary piRNA loading. We propose that Krimp enforces an antisense bias on piRNA pools by binding AGO3 and blocking its access to primary piRNAs.
Project description:Piwi-interacting RNAs (piRNAs) suppress transposon activity in animal germ cells. In the Drosophila ovary, primary Aubergine (Aub)-bound antisense piRNAs initiate the ping-pong cycle to produce secondary AGO3-bound sense piRNAs. This increases the number of secondary Aub-bound antisense piRNAs that can act to destroy transposon mRNAs. Here we show that Krimper (Krimp), a Tudor-domain protein, directly interacts with piRNA-free AGO3 to promote symmetrical dimethylarginine (sDMA) modification, ensuring sense piRNA-loading onto sDMA-modified AGO3. In aub mutant ovaries, AGO3 associates with ping-pong signature piRNAs, suggesting AGO3’s compatibility with primary piRNA loading. Krimp sequesters ectopically expressed AGO3 within Krimp bodies in cultured ovarian somatic cells (OSCs), in which only the primary piRNA pathway operates. Upon krimp-RNAi in OSCs, AGO3 loads with piRNAs, further showing the capacity of AGO3 for primary piRNA loading. We propose that Krimp enforces an antisense bias on piRNA pools by binding AGO3 and blocking its access to primary piRNAs. In order to investigate function of Krimp in piRNA pathway, sequencing of Piwi subfamily protein associated small RNAs was performed using adult Drosophila ovaries and Ovarian Somatic Cells (OSCs) depleted for Krimp or Aub.
Project description:The piRNA pathway is studied in great detail in Drosophila female germline. In this study we show that unlike the female germline where all Piwi proteins are expressed throughout oogenesis, Ago3 - a Piwi family protein shows a spatial expression male germline. To understand dynamics of piRNA pathway during spermatogonia and primary spermatocyte stages of male germline development, we used arrest mutants. The bag of marbles (bam) and benign gonial cell neoplasm (bgcn) mutants have only early mitotic dividing germline cells in the testes due to failure to progress to primary spermatocyte stage, the cannonball (can) and spermatocyte arrest (sa) mutant germline cells cannot progress beyond primary spermatocyte stage. To investigate the dynamics of the piRNA pathway during spermatogenesis in spermatogonia and primary spermatocyte stages, we used testicular tissues from these stage-specific arrested mutants. While we used entire bam and bgcn mutant testes for spermatogonia purification, we while we manually removed the apical regions of can and sa mutant testes to exclude mitotically dividing undifferentiated germline cells for primary spermatocytes purification. Our results show that piRNAs mapping to transposons are more abundant in spermatogonia, whereas those mapping to Suppressor of Stellate [Su(Ste)] and AT-chX are mostly expressed in primary spermatocytes. Furthermore we observed that transposon-mapping piRNAs with ping-pong signature are more abundant in spermatogonia albeit still detectable in primary spermatocytes where Ago3 is not expressed. These results suggest that robust piRNA production via ping-pong cycle takes place in spermatogonia, and to a lesser extent in primary spermatocytes even in the absence of Ago3. Consistently, piRNAs from ago3 mutant testes also exhibit the ping-pong signature, confirming that a non-canonical ping-pong cycle is acting during spermatogenesis. Our study provides a developmental dimension to the piRNA pathway and uncovers a new mechanism used in the male germline to silence transposons. The difference in piRNA from spermatogonia and primary spermatocyte stages was studied by comparing small RNAs from bam and bgcn mutant testis, which represent spermatogonia stages with the small RNAs from apex removed can and sa testis, representing primary spermatocyte stages. In the study we also studied effect of loss of Piwi family proteins Aub and Ago3, which have different spatial expression during male germline development.
Project description:piRNAs function in silencing retrotransposons by associating with the PIWI proteins, AGO3, Aub, and Piwi, in Drosophila germlines. Bioinformatics analyses of piRNAs in Drosophila ovaries suggested that piRNAs are produced by two systems, the primary processing pathway and the amplification loop, from repetitive genes and piRNA clusters in the genome. The amplification loop occurs in a Dicer-independent, PIWI-Slicer-dependent manner. However, the primary processing pathway remains largely conceptual. Here we show that in ovarian somatic cells, which lack Aub and AGO3 but express Piwi, the primary processing pathway for piRNAs indeed exists. Keywords: Small RNA profiling by high throughput sequencing
Project description:Silencing of transposons in the Drosophila ovary relies on three Piwi-family proteins, Piwi, Aubergine (Aub), and Ago3, acting in concert with their small RNA guides, the piRNAs. Aub and Ago3 are found in the germ cell cytoplasm, where they function in the ping-pong cycle to consume transposon mRNAs. The nuclear Piwi protein is required for transposon silencing in both germ and somatic follicle cells, yet the precise mechanisms by which Piwi acts remain largely unclear. We investigated the role of Piwi by combining cell-type specific knockdowns with measurements of steady state transposon mRNA levels, nascent RNA synthesis, and small RNA abundance. In somatic cells, Piwi loss lead to concerted effects on nascent transcripts and transposon mRNAs, indicating that Piwi acts through transcriptional gene silencing (TGS). In germ cells, Piwi loss showed disproportionate impacts on steady state RNA levels, indicating that it also exerts an effect on post-transcriptional gene silencing (PTGS). Piwi knockdown affected levels of germ cell piRNAs presumably bound to Aub and Ago3, perhaps explaining its post-transcriptional impacts. Overall, our results indicate that Piwi plays multiple roles in the piRNA pathway, in part enforcing transposon repression through effects on transcription but also participating in germ cell piRNA biogenesis.
Project description:Piwi-interacting RNAs (piRNAs) silence transposons in animal germ cells. In Drosophila, the reciprocal “Ping-Pong” cycle of piRNA-directed RNA cleavage, catalyzed by the PIWI proteins Aubergine (Aub) and Argonaute3 (AGO3) through their Slicer activity, is believed to expand the population of antisense piRNAs in response to transposon expression. Whether and how the Slicer activity of AGO3/Aub promotes the process of the secondary piRNA amplification remain unclear. Here we generated transgenic flies that could express AGO3 Slicer mutant forms to ellucidate the Slicer activity of AGO3.