Project description:The mammalian gastrointestinal tract contains a diverse ecosystem of microbial species collectively making up the gut microbiome. Emerging evidence highlights a critical relationship between gut microbiota and neurocognitive development. Consumption of unhealthy yet palatable dietary factors associated with obesity and metabolic dysfunction (e.g., saturated fat, added sugar) produces microbiota dysbiosis and negatively impacts neurocognitive function, particularly when consumed during early life developmental periods. Here we explore whether excessive early life consumption of added sugars negatively impacts neurocognitive development via the gut microbiome. Using a rodent model of habitual sugar-sweetened beverage (SSB) consumption during the adolescent stage of development, we first show that excessive early life sugar intake impairs hippocampal-dependent memory function when tested during adulthood while preserving other neurocognitive domains. Gut microbiome genomic sequencing analyses reveal that early life SSB consumption alters the abundance of various bacterial populations, including elevations in operational taxonomic units within the genus Parabacteroides (P. distasonis and P. johnsonii) whose abundance negatively correlated with memory task performance. Additional results reveal that in vivo Parabacteroides enrichment of cultured P. distasonis and P. johnsonii bacterial species in adolescent rats severely impairs memory function during adulthood. Hippocampus transcriptome analyses identify gene expression alterations in neurotransmitter synaptic signaling, intracellular kinase signaling, metabolic function, neurodegenerative disease, and dopaminergic synaptic signaling-associated pathways as potential mechanisms linking microbiome outcomes with memory impairment. Collectively these results identify microbiota dysbiosis as a mechanism through which early life unhealthy dietary patterns negatively impact neurocognitive outcomes.
Project description:Calorie restriction (CR) and fasting are common approaches to weight reduction, but the maintenance is difficult after resuming food consumption. Meanwhile, the gut microbiome associated with energy harvest alters dramatically in response to nutrient deprivation. Here, we reported that CR and high-fat diet (HFD) both remodeled the gut microbiota with similar microbial composition. Parabacteroides distasonis was most significantly decreased after CR or HFD. CR altered microbiota and reprogramed metabolism, resulting in a distinct serum bile acid profile characterized by depleting the proportion of non-12α-hydroxylated bile acids, ursodeoxycholic acid and lithocholic acid. Downregulation of UCP1 expression in brown adipose tissue and decreased serum GLP-1 were observed in the weight-rebound mice. Moreover, treatment with Parabacteroides distasonis or non-12α-hydroxylated bile acids ameliorated weight regain via increased thermogenesis. Our results highlighted the gut microbiota- bile acid crosstalk in rebound weight gain and Parabacteroides distasonis as a potential probiotic to prevent rapid post-CR weight gain.
2022-04-01 | MTBLS4431 | MetaboLights
Project description:PRSS8 Suppresses Colorectal Carcinogenesis and Metastasis