Project description:<p>The study of antimicrobial resistance (AMR) in infectious diarrhea has generally been limited to cultivation, antimicrobial susceptibility testing and targeted PCR assays. When individual strains of significance are identified, whole genome shotgun (WGS) sequencing of important clones and clades is performed. Genes that encode resistance to antibiotics have been detected in environmental, insect, human and animal metagenomes and are known as "resistomes". While metagenomic datasets have been mined to characterize the healthy human gut resistome in the Human Microbiome Project and MetaHIT and in a Yanomani Amerindian cohort, directed metagenomic sequencing has not been used to examine the epidemiology of AMR. Especially in developing countries where sanitation is poor, diarrhea and enteric pathogens likely serve to disseminate antibiotic resistance elements of clinical significance. Unregulated use of antibiotics further exacerbates the problem by selection for acquisition of resistance. This is exemplified by recent reports of multiple antibiotic resistance in Shigella strains in India, in Escherichia coli in India and Pakistan, and in nontyphoidal Salmonella (NTS) in South-East Asia. We propose to use deep metagenomic sequencing and genome level assembly to study the epidemiology of AMR in stools of children suffering from diarrhea. Here the epidemiology component will be surveillance and analysis of the microbial composition (to the bacterial species/strain level where possible) and its constituent antimicrobial resistance genetic elements (such as plasmids, integrons, transposons and other mobile genetic elements, or MGEs) in samples from a cohort where diarrhea is prevalent and antibiotic exposure is endemic. The goal will be to assess whether consortia of specific mobile antimicrobial resistance elements associate with species/strains and whether their presence is enhanced or amplified in diarrheal microbiomes and in the presence of antibiotic exposure. This work could potentially identify clonal complexes of organisms and MGEs with enhanced resistance and the potential to transfer this resistance to other enteric pathogens.</p> <p>We have performed WGS, metagenomic assembly and gene/protein mapping to examine and characterize the types of AMR genes and transfer elements (transposons, integrons, bacteriophage, plasmids) and their distribution in bacterial species and strains assembled from DNA isolated from diarrheal and non-diarrheal stools. The samples were acquired from a cohort of pediatric patients and controls from Colombia, South America where antibiotic use is prevalent. As a control, the distribution and abundance of AMR genes can be compared to published studies where resistome gene lists from healthy cohort sequences were compiled. Our approach is more epidemiologic in nature, as we plan to identify and catalogue antimicrobial elements on MGEs capable of spread through a local population and further we will, where possible, link mobile antimicrobial resistance elements with specific strains within the population.</p>
Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment. C57BL/6J mice received three antibiotic courses: at days 10-15, 28-31, and 37-40 of life, amoxicillin or tylosin.Livers were collected at age 22 weeks, RNA was extracted, and transcriptional differences were measured by microarray analysis.
Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment.
Project description:Abstract: Many mouse models of neurological disease use the tetracycline transactivator (tTA) system to control transgene expression by oral treatment with the broad-spectrum antibiotic doxycycline. Antibiotic treatment used for transgene control might have undesirable systemic effects, including the potential to affect immune responses in the brain via changes in the gut microbiome. Recent work has shown that an antibiotic cocktail to perturb the gut microbiome can suppress microglial reactivity to brain amyloidosis in transgenic mouse models of Alzheimer's disease based on controlled overexpression of the amyloid precursor protein (APP). Here we assessed the impact of chronic low dose doxycycline on gut microbiome diversity and neuroimmune response to systemic LPS challenge in a tTA-regulated model of Alzheimer's amyloidosis. We show that doxycycline decreased microbiome diversity in both APP transgenic and wild-type mice and that these changes persisted long after drug withdrawal. Despite this change in microbiome composition, dox treatment had minimal effect on transcriptional signatures in the brain, both at baseline and following acute LPS challenge. Our findings suggest that central neuroinflammatory responses may be less affected by dox at doses needed for transgene control than by antibiotic cocktail at doses used for microbiome manipulation.
Project description:BACKGROUND: Metagenomic studies carried out in the past decade have led to an enhanced understanding of the gut microbiome in human health, however, the Indian gut microbiome is not well explored yet. We analysed the gut microbiome of 110 healthy individuals from two distinct locations (North-Central and Southern) in India using multi-omics approaches, including 16S rRNA gene amplicon sequencing, whole genome shotgun metagenomic sequencing, and metabolomic profiling of faecal and serum samples. </br> RESULTS: The gene catalogue established in this study emphasizes the uniqueness of the Indian gut microbiome in comparison to other populations. The gut microbiome of the cohort from North-Central India, which was primarily consuming a plant-based diet, was found to be associated with Prevotella, and also showed an enrichment of Branched Chain Amino Acid (BCAA) and lipopolysaccharide (LPS) biosynthesis pathways. In contrast, the gut microbiome of the cohort from Southern India, which was consuming an omnivorous diet, showed associations with Bacteroides, Ruminococcus and Faecalibacterium, and had an enrichment of Short Chain Fatty Acid (SCFA) biosynthesis pathway and BCAA transporters. This corroborated well with the metabolomics results, which showed higher concentration of BCAAs in the serum metabolome of the North-Central cohort and an association with Prevotella. In contrast, the concentration of BCAAs were found higher in the faecal metabolome of the Southern-India cohort, and showed a positive correlation with the higher abundance of BCAA transporters. </br> CONCLUSIONS: The study reveals the unique composition of Indian gut microbiome, establishes the Indian gut microbial gene catalogue, and compares it with the gut microbiome of other populations. The functional associations revealed using metagenomic and metabolomic approaches provide novel insights on the gut-microbe-metabolic axis, which will be useful for future epidemiological and translational researches.
Project description:Mechanisms through which the microbiome communicates with the systemic immune system remain unclear. We have identified a family of microbiome Bacteroidota-derived lipopeptides – the serine-glycine (S/G) lipids, and specifically L654 – that are TLR2 ligands, access the systemic circulation, and potentially link the microbiome and systemic innate immunity. We have previously postulated that L654 and the S/G lipids regulate systemic innate immunity by entering the systemic circulation and mediating weak TLR2 interactions that maintain “normal” levels of innate immune signaling feedback inhibitors. In proof-of-concept studies, we reported that increasing systemic L654 levels in mice by administering exogenous L654 intravenously significantly diminishes systemic innate immune responses and attenuates murine autoimmunity. In the present study, our goal was to confirm the role of the microbiome in mediating this mode of immunoregulation by decreasing the microbiome-based production of S/G lipids. We now report that decreasing microbiome Bacteroidota in mice using a specific oral antibiotic/rest protocol reduces fecal and plasma S/G lipids levels and significantly enhances systemic innate immune responses. Replenishing systemic levels of S/G lipids after antibiotic treatment through exogenous administration of L654 returns innate immune responses to normal levels, confirming the regulatory role of S/G lipids in this mode of microbiome regulation. Finally, RNAseq analysis of splenic monocytes derived from antibiotic-treated and control mice prior to ex vivo stimulation demonstrates that the antibiotic/rest protocol and the concomitant decrease in microbiome S/G lipids and Bacteroidota has significant downregulatory effects on normal homeostatic pro-inflammatory pathways. These effects are also associated with downregulation of specific proinflammatory pathway inhibitors, which may suggest a potential mechanism underlying the enhancement in ex vivo innate immune stimulated responses of these monocytes. Overall, our results suggest that S/G lipids are microbiome-derived bacterial factors capable of regulating systemic innate immunity and as such are manipulatable targets with therapeutic potential for enhancing or decreasing innate immunity in the context of infectious, malignant, and autoimmune diseases.
Project description:Mechanisms through which the microbiome communicates with the systemic immune system remain unclear. We have identified a family of microbiome Bacteroidota-derived lipopeptides – the serine-glycine (S/G) lipids, and specifically L654 – that are TLR2 ligands, access the systemic circulation, and potentially link the microbiome and systemic innate immunity. We have previously postulated that L654 and the S/G lipids regulate systemic innate immunity by entering the systemic circulation and mediating weak TLR2 interactions that maintain “normal” levels of innate immune signaling feedback inhibitors. In proof-of-concept studies, we reported that increasing systemic L654 levels in mice by administering exogenous L654 intravenously significantly diminishes systemic innate immune responses and attenuates murine autoimmunity. In the present study, our goal was to confirm the role of the microbiome in mediating this mode of immunoregulation by decreasing the microbiome-based production of S/G lipids. We now report that decreasing microbiome Bacteroidota in mice using a specific oral antibiotic/rest protocol reduces fecal and plasma S/G lipids levels and significantly enhances systemic innate immune responses. Replenishing systemic levels of S/G lipids after antibiotic treatment through exogenous administration of L654 returns innate immune responses to normal levels, confirming the regulatory role of S/G lipids in this mode of microbiome regulation. Finally, RNAseq analysis of splenic monocytes derived from antibiotic-treated and control mice with or without exogenous L654 prior to ex vivo stimulation demonstrates that the antibiotic/rest protocol and the concomitant decrease in microbiome S/G lipids and Bacteroidota has significant downregulatory effects on normal homeostatic pro-inflammatory pathways. These effects are also associated with downregulation of specific proinflammatory pathway inhibitors, which may suggest a potential mechanism underlying the enhancement in ex vivo innate immune stimulated responses of these monocytes. Overall, our results suggest that S/G lipids are microbiome-derived bacterial factors capable of regulating systemic innate immunity and as such are manipulatable targets with therapeutic potential for enhancing or decreasing innate immunity in the context of infectious, malignant, and autoimmune diseases.
2024-06-20 | GSE269771 | GEO
Project description:Dynamic effects of sewage sludge treatment on soil microbial community composition, mobilome and resistome
Project description:We analyzed the effects of antibiotics using a popular model of gut microbiota depletion in mice by a cocktail of antibiotics. We combined intestinal transcriptome together with metagenomic analysis of the gut microbiota to develop a new bioinformatics approach that probes the links between microbial components and host functions. We found that most antibiotic-induced alterations can be explained by three factors: depletion of the microbiota; direct effects of antibiotics on host tissues; and the effects of remaining antibiotic-resistant microbes. While microbe depletion led to down-regulation of immunity, the two other factors primarily inhibited mitochondrial gene expression and amounts of active mitochondria, and induced cell death. By reconstructing and analyzing a transkingdom network, we discovered that these toxic effects were mediated by virulence/quorum sensing in antibiotic-resistant bacteria. This SuperSeries is composed of the SubSeries listed below. Refer to individual Series
Project description:The early-life intestinal microbiota plays a key role in shaping host immune system development. We found that a single early-life antibiotic course (1PAT) accelerated Type 1 diabetes (T1D) development in male NOD mice. The single course had strong and persistent effects on the intestinal microbiome, selecting for a highly metabolically active metagenome, with altered hepatic and serum metabolites. The exposure led to differential ileal and hepatic histone modification, and perturbed ileal gene expression, strongly affecting the normal maturational pattern. Earliest effects involved specific genes in innate immune pathways, with later effects on adaptive immunity. Microbiome analysis revealed four potential T1D-protective taxa and four T1D-accelerating taxa, and a network linking specific microbial taxa to differences in ileal gene expression was identified. This simplified animal model has improved understanding of the mechanisms by which early-life gut microbiome perturbations alter host intestinal responses, contributing to T1D.