Project description:Bile acids are steroid compounds from the digestive tracts of vertebrates that enter agricultural environments in unusual high amounts with manure. Bacteria degrading bile acids can readily be isolated from soils and waters including agricultural areas. Under laboratory conditions, these bacteria transiently release steroid compounds as degradation intermediates into the environment. These compounds include androstadienediones (ADDs), which are C19-steroids with potential hormonal effects. Experiments with Caenorhabditis elegans showed that ADDs derived from bacterial bile acid degradation had effects on its tactile response, reproduction rate, and developmental speed. Additional experiments with a deletion mutant as well as transcriptomic analyses revealed that these effects might be conveyed by the putative testosterone receptor NHR-69. Soil microcosms showed that the natural microflora of agricultural soil is readily induced for bile acid degradation accompanied by the transient release of steroid intermediates. Establishment of a model system with a Pseudomonas strain and C. elegans in sand microcosms indicated transient release of ADDs during the course of bile acid degradation and negative effects on the reproduction rate of the nematode. This proof-of-principle study points at bacterial degradation of manure-derived bile acids as a potential and so-far overlooked risk for invertebrates in agricultural soils.
Project description:Biocontrol offers a promising alternative to synthetic fungicides for the control of a variety of pre- and post-harvest diseases of crops. Black rot, which is caused by the pathogenic fungus Ceratocytis fimbriata, is the most destructive post-harvest disease of sweet potato, but little is currently known about potential biocontrol agents for this fungus. Here, we isolated several microorganisms from the tuberous roots and shoots of field-grown sweet potato plants, and analyzed their ribosomal RNA gene sequences. The microorganisms belonging to the genus Pantoea made up a major portion of the microbes residing within the sweet potato plants, and fluorescence microscopy showed these microbes colonized the intercellular spaces of the vascular tissue in the sweet potato stems. Four P. dispersa strains strongly inhibited C. fimbriata mycelium growth and spore germination, and altered the morphology of the fungal hyphae. The detection of dead C. fimbriata cells using Evans blue staining suggested that these P. dispersa strains have fungicidal rather than fungistatic activity. Furthermore, P. dispersa strains significantly inhibited C. fimbriata growth on the leaves and tuberous roots of a susceptible sweet potato cultivar ("Yulmi"). These findings suggest that P. dispersa strains could inhibit black rot in sweet potato plants, highlighting their potential as biocontrol agents.