Project description:Embryonic stem cells (ESCs) have the ability to differentiate into cells of the three germ layers, and leukemia inhibitory factor (LIF) maintains the pluripotency and promotes the proliferation of ESCs. In the absence of LIF, ESCs spontaneously differentiate and form three-dimensional aggregates known as embryoid bodies (EBs). The differentiation of EBs mimics the process of embryonic development, that is, the differentiation of cells into the three embryonic germ layers (endoderm, mesoderm, and ectoderm), some of which differentiate into beating cardiomyocytes. Static magnetic fields have diverse effects on organisms, studies on the regulation of the differentiation of ESCs to cardiomyocytes by static magnetic fields are not sufficient. To better understand transcriptional landscape and signal transductions, we performed RNA-seq analysis of EBs cultured in two different conditions: conventional incubator, static magnetic field incubator.
Project description:Neural proliferation and differentiation fates of pluripotent stem cells are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to Earth’s magnetic fields and other sources, there has been scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, the emerging application of electrical and magnetic stimulation to treat neurological disorders emphasizes the relevance of understanding the impact and mechanisms behind these stimuli. Here, the effects of magnetic nanoparticles (MNPs) contained in polymeric coatings and the static external magnetic field (EMF, 0.4 Tesla) were investigated on neural induction of murine embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs) into induced dopaminergic neurons (iDA).
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression. Two-condition experiment, Normoxic MSCs vs. Hypoxic MSCs.
Project description:Gene methylation profiling of immortalized human mesenchymal stem cells comparing HPV E6/E7-transfected MSCs cells with human telomerase reverse transcriptase (hTERT)- and HPV E6/E7-transfected MSCs. hTERT may increase gene methylation in MSCs. Goal was to determine the effects of different transfected genes on global gene methylation in MSCs. Two-condition experiment, KP MSCs vs. 3A6 MSCs.
Project description:We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3’ and/or 5’ end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5’ differences and in support of this we report that a 5’ isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5’ isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:This study provides a framework describing how magnetic exposure is transduced from the most-plausible molecular-level âbiosensorâ (lipid membranes) to cell-level responses that include differentiation toward neural lineages. In addition, SMF provided a stimulus that uncovered new relationships â that exist even in the absence of magnetic fields â between gangliosides, the time dependent regulation of IL-6 signaling by these glycolipids, and the fate of embryonic cells. Experiment Overall Design: Subconfluent (70%-80%) undifferentiated LVECs (passage 11) were resuspended at 500k cells in 10 ml culture medium (day 0) and cultured in the presence or absence of static magnetic field. Four conditions were investigated: A) Control (without exposure); B) One day exposure (Exposed on day 6 without recovery); C) Continuous exposure (day 2 to day 5) followed by one day recovery; D) Continuous exposure (day 2 to day 6) without recovery. Cells are harvested on day 7. mRNA was isolated from the cells and microarray analysis was done using the Affymetric Human Genome U133 2.0 Plus Chip.