Project description:The key myeloid transcription factor (TF) CEBPA is frequently mutated in acute myeloid leukemia (AML), but the molecular ramifications of this leukemic driver mutation remain elusive. To investigate CEBPA mutant AML, we compared gene expression changes in human CEBPA mutant AML and in the corresponding CebpaLp30 mouse model, and identified a conserved cross-species transcriptional program. ChIP-seq revealed aberrantly activated enhancers, exclusively occupied by the leukemia-associated CEBPA-p30 isoform. One leukemic-enhancer upstream of Nt5e, encoding CD73, was physically and functionally linked to this conserved AML gene, and could be activated by CEBPA. Targeting of CD73-adenosine signaling increased AML survival in transplanted mice. Our data indicate a first-in-class link between a TF cancer driver mutation and a druggable, direct transcriptional target.
Project description:Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients that shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, while the rest presented with silencing of this gene and co-expression of certain T cell markers. DNA methylation studies revealed that these two groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA silenced leukemias also displayed marked hypermethylation when compared with normal CD34+ hematopoietic cells, while CEBPA mutant cases showed only mild changes in DNA methylation when compared to these normal progenitors. Biologically, CEBPA silenced leukemias presented with a decreased response to myeloid growth factors in vitro. Experiment Overall Design: Direct comparison of gene expression in leukemic blasts from 8 patients with Acute Myeloid Leukemia (AML) carrying a CEBPA mutation and 8 patients with AML without CEBPA mutation but with silencing of CEBPA expression, and with 9 samples of T Acute Lymphoblastic Leukemia (T-ALL) patients.
Project description:Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients that shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, while the rest presented with silencing of this gene and co-expression of certain T cell markers. DNA methylation studies revealed that these two groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA silenced leukemias also displayed marked hypermethylation when compared with normal CD34+ hematopoietic cells, while CEBPA mutant cases showed only mild changes in DNA methylation when compared to these normal progenitors. Biologically, CEBPA silenced leukemias presented with a decreased response to myeloid growth factors in vitro. Keywords: DNA methylation profiling Direct comparison of DNA methylation in leukemic blasts from 8 patients with Acute Myeloid Leukemia (AML) carrying a CEBPA mutation and 8 patients with AML without CEBPA mutation but with silencing of CEBPA expression. Two control groups are included: 8 CD34+ bone marrow samples from healthy donors and 9 samples of T Acute Lymphoblastic Leukemia (T-ALL) patients.
Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis Control RD-ES cells and HDGF-silenced RD-ES cells were profiled on 22K Human Genome Array
Project description:Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients that shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, while the rest presented with silencing of this gene and co-expression of certain T cell markers. DNA methylation studies revealed that these two groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA silenced leukemias also displayed marked hypermethylation when compared with normal CD34+ hematopoietic cells, while CEBPA mutant cases showed only mild changes in DNA methylation when compared to these normal progenitors. Biologically, CEBPA silenced leukemias presented with a decreased response to myeloid growth factors in vitro. Keywords: Gene expression profiling using arrays
Project description:Comparing the gene expression profiling of HDGF-silenced RD-ES cells and control RD-ES cells to identify genes regulated by HDGF in RD-ES cells. Keywords: expression analysis
Project description:Acute Myeloid Leukemia (AML) is a heterogeneous disease from the molecular and biological standpoints, and even patients with a specific gene expression profile may present clinical and molecular heterogeneity. We studied the epigenetic profiles of a cohort of patients that shared a common gene expression profile but differed in that only half of them harbored mutations of the CEBPA locus, while the rest presented with silencing of this gene and co-expression of certain T cell markers. DNA methylation studies revealed that these two groups of patients could be readily segregated in an unsupervised fashion based on their DNA methylation profiles alone. Furthermore, CEBPA silencing was associated with the presence of an aberrant DNA hypermethylation signature, which was not present in the CEBPA mutant group. This aberrant hypermethylation occurred more frequently at sites within CpG islands. CEBPA silenced leukemias also displayed marked hypermethylation when compared with normal CD34+ hematopoietic cells, while CEBPA mutant cases showed only mild changes in DNA methylation when compared to these normal progenitors. Biologically, CEBPA silenced leukemias presented with a decreased response to myeloid growth factors in vitro. Keywords: DNA methylation profiling