Project description:To explore the circRNA expression profiles during the development and progression of cervical cancer, we performed RNA sequencing analysis with ribosomal RNA-depleted in HPV negative normal cervical epithelium, HPV16 positive normal cervical epithelium, HPV16 positive high-grade squamous intraepithelial lesion (HSIL), and HPV16 positive cervical squamous cell carcinoma tissues,6 cases in each group.Totally 66868 circRNAs were identified (Back-spliced junctions reads≥1)
Project description:CircRNAs have been found to regulate mRNA expression levels and serve an important role in cervix carcinogenesis. To explore the circRNA expression profiles during the development and progression of cervical cancer, we performed microarray analysis with total RNA in normal cervical epithelium(n=7), HPV16 positive high-grade squamous intraepithelial lesion (HSIL)(n=6), and HPV16 positive cervical squamous cell carcinoma tissues(n=7).
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type. In this study we used a common reference design experiment where the common reference used was a commercial RNA from normal cervix (Ambion) and the test samples were 4 pre-treatment squamous cell cervical carcinoma, 7 high-grade Squamous Intraepithelial Lesion (CINII, n=2 and CIN III, n=5) sample, 9 low-grade Squamous Intraepithelial Lesion (CIN I) samples, 19 normal cervix samples and 4 pools of normal cervix samples.
Project description:We sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array. This submission describes the transcriptional profiles of a cohort totalling 77 cervical normal, premalignant lesions, and squamous cell carcinomas
Project description:Background. MicroRNAs (miRNAs) are short (~22 nt) non-coding regulatory RNAs that control gene expression at the translational level. Deregulation of miRNA expression has been discovered in a wide variety of tumours and it is now clear that they contribute to cancer development and progression. This prompted the development of miRNA-chips for cancer diagnosis or prognosis, opening a new door to understand carcinogenesis. Cervical cancer is one of the most common cancers in women worldwide. Therefore, there is a strong need for a non-invasive, fast and efficient method to diagnose the disease. We investigated miRNA expression profiles in cervical cancer using a microarray platform developed in house containing probes for mature miRNAs. Results. We have evaluated miRNA expression profiles of a heterogeneous set of cervical tissues from 25 different patients. This set included 19 normal cervical tissues, 4 squamous cell carcinoma, 5 high-grade squamous intraepithelial lesion (HSIL) and 9 low-grade squamous intraepithelial lesion (LSIL) samples. We observed high variability in miRNA expression especially among normal cervical samples, which prevented us from obtaining a unique miRNA expression signature for this tumour type. However, miRNAs deregulation in malignant and pre-malignant cervical tissues was detected after tackling the high variability observed. We were also able to identify putative targets of relevant candidate miRNAs. Conclusions. Our results show that miRNA deregulation may play an important role in the malignant transformation of cervical squamous cells. In addition, deregulated miRNAs highlight new candidate targets allowing a better understanding of the molecular mechanism of this tumour type.
Project description:Genome-wide DNA methylation profiles in liquid based cytology (LBC) cervical scrapes samples was assessed using the Illumina Infinium Methylation850 BeadChip V1.0B4. The purpose of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared to the DNA samples from cervical intraepithelial neoplasia grade (CIN) and normal cervical scrapes.
Project description:Triage methods for cervical cancer detection show moderate accuracy and present considerable false-negative and false-positive result rates. A complementary diagnostic parameter could help improve the accuracy of identifying patients who need treatment. A pilot study was performed using a targeted proteomics approach with opportunistic ThinPrep samples obtained from women collected at the hospital’s outpatient clinic to determine the concentration levels of minichromosome maintenance-3 (MCM3) and envoplakin (EVPL) proteins. Forty samples with ’’negative for intraepithelial lesion or malignancy’ (NILM), 21 samples with ’atypical squamous cells of undetermined significance’ (ASC-US), and 33 samples with ’low-grade squamous intraepithelial lesion and worse’ (≥LSIL) were analyzed, using cytology and the patients’ histology reports.
Project description:The aim of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared to the DNA samples from cervical intraepithelial neoplasia grade 3 (CIN3) and normal cervical scrapes. The Illumina Infinium Human Methylation 450 K BeadChip method identifies genome-wide DNA methylation changes in CpG islands, CpG shores and shelves.
Project description:The aim of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared to the DNA samples from cervical intraepithelial neoplasia grade 3 (CIN3) and normal cervical scrapes. The Illumina Infinium Human Methylation 450 K BeadChip method identifies genome-wide DNA methylation changes in CpG islands, CpG shores and shelves. In this study 20 normal cervical samples (HPV negative), 18 samples with CIN3 lesions (HPV positive) and 6 cervical cancer tissues (HPV positive) were included.
Project description:We sought to apply the technologies of gene expression profiling to detect genes significant in the aetiology of cervical carcinoma . We investigated 14 normal (NAD), 11 low grade squamous intrapepithelial lesions (LSIL), 21 high grade squamous intraepithelial lesions (HSIL) and 28 squamous cell carcinomas by Affymetrix GeneChip whole transcriptome profiling. Two SCC cell lines were also included in the cohort. Normal and SILS were profiled using the Affymetrix U133A platform, while SCCs and Cell lines were profiled using the Affymetrix U133A plus 2.0 array.