Project description:Gene expression profiling of clostridium perfringens infection in broilers on medicated and non-medicated diets using chicken 44k agilent microarray. To elucidate molecular and ceelular mechanisms of bacitracin effect on CP infection in chickens by microarray technology.
Project description:Objective of the study is to find out the differentially regulated genes in Salmonella typhimurium subjected to H2O2 stress. Gene expression profiling was carried out using Agilent microarray platform. Keywords: H2O2 Stress
Project description:Raghunathan2009 - Genome-scale metabolic
network of Salmonella typhimurium (iRR1083)
This model is described in the article:
Constraint-based analysis of
metabolic capacity of Salmonella typhimurium during
host-pathogen interaction.
Raghunathan A, Reed J, Shin S,
Palsson B, Daefler S.
BMC Syst Biol 2009; 3: 38
Abstract:
BACKGROUND: Infections with Salmonella cause significant
morbidity and mortality worldwide. Replication of Salmonella
typhimurium inside its host cell is a model system for studying
the pathogenesis of intracellular bacterial infections.
Genome-scale modeling of bacterial metabolic networks provides
a powerful tool to identify and analyze pathways required for
successful intracellular replication during host-pathogen
interaction. RESULTS: We have developed and validated a
genome-scale metabolic network of Salmonella typhimurium LT2
(iRR1083). This model accounts for 1,083 genes that encode
proteins catalyzing 1,087 unique metabolic and transport
reactions in the bacterium. We employed flux balance analysis
and in silico gene essentiality analysis to investigate growth
under a wide range of conditions that mimic in vitro and host
cell environments. Gene expression profiling of S. typhimurium
isolated from macrophage cell lines was used to constrain the
model to predict metabolic pathways that are likely to be
operational during infection. CONCLUSION: Our analysis suggests
that there is a robust minimal set of metabolic pathways that
is required for successful replication of Salmonella inside the
host cell. This model also serves as platform for the
integration of high-throughput data. Its computational power
allows identification of networked metabolic pathways and
generation of hypotheses about metabolism during infection,
which might be used for the rational design of novel
antibiotics or vaccine strains.
This model is hosted on
BioModels Database
and identified by:
MODEL1507180058.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:The existence of conventional dendritic cells (cDCs) has not yet been demonstrated outside mammals. In this paper, we identified bona fide cDCs in chicken spleen. Comparative profiling of global and of immune response gene expression, morphology, and T cell activation properties show that cDCs and macrophages (MPs) exist as distinct mononuclear phagocytes in chicken, resembling their human and mouse cell counterparts. Using computational analysis, core gene expression signatures for cDCs, MPs, T and B cells across chicken, human and mouse were established, which will facilitate the identification of these subsets in other vertebrates. Overall this study, by extending the newly uncovered cDC and MP paradigm to chicken, suggests that the generation of these two phagocyte lineages occurred before the reptile to mammal and bird transition in evolution. It opens avenues for the design of new vaccines and neutraceuticals that are mandatory for the sustained supply of poultry products in the expanding human population.
Project description:Cellular proteins in central nervous system involved in avian neurotropic virus infection remains completely unknown. To investigate host gene expression profile in NDV infected SPF chicken brains, The microarray initial analysis was performed at LC-Bio (Hangzhou, China). A 44K Agilent chicken whole genome chip (43,803 probes) (Agilent Technologies, USA) was used for gene microarray analysis from F48E9-, LaSota-infected and mock-infected brains through intraocular-nasal routes.The chicken brains were collected at 5 day post infection. The significance analysis was used to evaluate the differences in gene expression. P and fold change (FC) values represent the alteration tendency of gene expression between experimental and control groups. The genes (FC>2) were input in Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for DEGs.