Project description:Analysis of microbial community composition in arctic tundra and boreal forest soils using serial analysis of ribosomal sequence tags (SARST). Keywords: other
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.
Project description:Vuilleminia comedens is a basidiomycete pioneer species in attached angiosperm branches, especially beech (Fagus sylvaticus), initiating decomposition of lignocellulose. Pioneer species exert priority effects on subsequent colonisers influencing community structure. Wood decay is an essential part of the carbon cycle, underpinning forest ecosystem processes, but despite its clear importance, remarkably little is known about the pioneer species which begin the process of lignocellulose decomposition. This work studied the transcriptome and proteome of V. comedens growing in inoculated beech wood blocks in the laboratory. Our analysis focused on nutrient acquisition by decomposition of lignocellulose, and the specialised metabolic processes utilised by the fungus to mitigate against the effects of both plant defence compounds and the toxic derivatives produced as a result of lignin breakdown. Our results show that V. comedens expresses transcripts encoding a large range of enzymes associated with lignocellulose decomposition and metabolism of carbohydrate-based compounds, suggesting a broad-based approach to nutrient acquisition. Furthermore, the transcriptome included an array of genes for specialised metabolism and xenobiotic mitigation, some of which were highly expressed, suggesting that the chemical environment that V. comedens inhabits during wood decay is a significant challenge to successful growth. The proteomic data support the importance of lignin decomposition and xenobiotic mitigation to V. comedens.
Project description:Abstract: A large part of the nitrogen in forest soils is found in recalcitrant organic matter-protein complexes. Ectomycorrhizal fungi are thought to have a key role in the decomposition and mobilization of nitrogen from such complexes. The knowledge on the functional mechanisms of these processes, and how they are regulated by carbon from the host plant and the availability of more easily available forms of nitrogen sources are limited. We used spectroscopic analyses and transcriptome profiling to examine how the presence/absence of glucose and ammonium regulates the decomposition and mobilization of nitrogen from litter material by the ectomycorrhizal fungus Paxillus involutus. Amendments of glucose triggered the assimilation of nitrogen and the decomposition of the litter material. Concomitantly, the expression of genes encoding enzymes involved in oxidative (i.e. Fenton chemistry) degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism were upregulated in concert. Addition of ammonium had minute effects on both the expression of transcripts and decomposition of litter material, and only when glucose was present. Based on the spectroscopic analyses, three major types of chemical modifications of the litter material were observed. Each of them was correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggests that the expression of the decomposition and nitrogen assimilation machinery of ectomycorrhizal fungi can be firmly regulated by the host carbon supply, i.e. priming, and that the availability of inorganic nitrogen as such has limited effects on the saprotrophic activities. Rineau F, Shah F., Smits M.M., Persson P., Johansson T., Carleer R., Troein C., Tunlid A. (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus (submitted)
Project description:Abstract: A large part of the nitrogen in forest soils is found in recalcitrant organic matter-protein complexes. Ectomycorrhizal fungi are thought to have a key role in the decomposition and mobilization of nitrogen from such complexes. The knowledge on the functional mechanisms of these processes, and how they are regulated by carbon from the host plant and the availability of more easily available forms of nitrogen sources are limited. We used spectroscopic analyses and transcriptome profiling to examine how the presence/absence of glucose and ammonium regulates the decomposition and mobilization of nitrogen from litter material by the ectomycorrhizal fungus Paxillus involutus. Amendments of glucose triggered the assimilation of nitrogen and the decomposition of the litter material. Concomitantly, the expression of genes encoding enzymes involved in oxidative (i.e. Fenton chemistry) degradation of polysaccharides and polyphenols, peptidases, nitrogen transporters and enzymes in pathways of the nitrogen and carbon metabolism were upregulated in concert. Addition of ammonium had minute effects on both the expression of transcripts and decomposition of litter material, and only when glucose was present. Based on the spectroscopic analyses, three major types of chemical modifications of the litter material were observed. Each of them was correlated with the expression of specific sets of genes encoding extracellular enzymes. Our data suggests that the expression of the decomposition and nitrogen assimilation machinery of ectomycorrhizal fungi can be firmly regulated by the host carbon supply, i.e. priming, and that the availability of inorganic nitrogen as such has limited effects on the saprotrophic activities. Rineau F, Shah F., Smits M.M., Persson P., Johansson T., Carleer R., Troein C., Tunlid A. (2013) Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus (submitted) A one-chip study (data from 12 subarrays collected from a 12-plex Nimblegen microarray (ID 467991) using total RNA recovered from three separate glass-bead cultures of Paxillus involutus (ATCC200175) after amendments of various soil-derived substrates. Transcriptome profiling to examine how the presence/absence of glucose and ammonium regulates the decomposition and mobilization of nitrogen from litter material by the ectomycorrhizal fungus Paxillus involutus.
Project description:Many trees form ectomycorrhizal symbiosis with fungi. During symbiosis, the tree roots supply sugar to the fungi in exchange for nitrogen, and this process is critical for the nitrogen and carbon cycles in forest ecosystems. However, the extents to which ectomycorrhizal fungi can liberate nitrogen and modify the soil organic matter and the mechanisms by which they do so remain unclear since they have lost many enzymes for litter decomposition that were present in their free-living, saprotrophic ancestors. Using time-series spectroscopy and transcriptomics, we examined the ability of two ectomycorrhizal fungi from two independently evolved ectomycorrhizal lineages to mobilize soil organic nitrogen. Both species oxidized the organic matter and accessed the organic nitrogen. The expression of those events was controlled by the availability of glucose and inorganic nitrogen. Despite those similarities, the decomposition mechanisms, including the type of genes involved as well as the patterns of their expression, differed markedly between the two species. Our results suggest that in agreement with their diverse evolutionary origins, ectomycorrhizal fungi use different decomposition mechanisms to access organic nitrogen entrapped in soil organic matter. The timing and magnitude of the expression of the decomposition activity can be controlled by the below-ground nitrogen quality and the above-ground carbon supply.
Project description:Here we have compared adult wildtype (N2) C. elegans gene expression when grown on different bacterial environments/fod sources in an effort to model naturally occuring nematode-bacteria interactions at the Konza Prairie. We hypothesize that human-induced changes to natural environments, such as the addition of nitrogen fertalizer, have effects on the bacterial community in soils and this drives downstream changes in the structure on soil bacterial-feeding nematode community structure. Here we have used transcriptional profiling to identify candidate genes involved in the interaction of nematodes and bacteria in nature.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw.
2010-03-08 | GSE20073 | GEO
Project description:Fungal and Bacterial Community Composition in Disturbed Sub-boreal Forest Soils