Project description:This model is from the article:
Modelling thrombin generation in human ovarian follicular fluid
Bungay Sharene D., Gentry Patricia A., Gentry Rodney D.
Bulletin of Mathematical BiologyVolume 68, Issue 8, 12 July 2006, Pages 2283-302
16838084,
Abstract:
A mathematical model is constructed to study thrombin production in human ovarian follicular fluid. The model results show that the amount of thrombin that can be produced in ovarian follicular fluid is much lower than that in blood plasma, failing to reach the level required for fibrin formation, and thereby supporting the hypothesis that in follicular fluid thrombin functions to initiate cellular activities via intracellular signalling receptors. It is also concluded that the absence of the amplification pathway to thrombin production in follicular fluid is a major factor in restricting the amount of thrombin that can be produced. Titration of the initial concentrations of the various reactants in the model lead to predictions for the amount of tissue factor and phospholipid that is required to maintain thrombin production in the follicle, as well as to the conclusion that tissue factor pathway inhibitor has little effect on the time that thrombin generation is sustained. Numerical experiments to determine the effect of factor V, which is at a much reduced level in follicular fluid compared to plasma, and thrombomodulin, illustrate the importance for further experimental work to determine values for several parameters that have yet to be reported in the literature.
Project description:This model is from the article:
Modelling thrombin generation in human ovarian follicular fluid
Bungay Sharene D., Gentry Patricia A., Gentry Rodney D.
Bulletin of Mathematical BiologyVolume 68, Issue 8, 12 July 2006, Pages 2283-302
16838084,
Abstract:
A mathematical model is constructed to study thrombin production in human ovarian follicular fluid. The model results show that the amount of thrombin that can be produced in ovarian follicular fluid is much lower than that in blood plasma, failing to reach the level required for fibrin formation, and thereby supporting the hypothesis that in follicular fluid thrombin functions to initiate cellular activities via intracellular signalling receptors. It is also concluded that the absence of the amplification pathway to thrombin production in follicular fluid is a major factor in restricting the amount of thrombin that can be produced. Titration of the initial concentrations of the various reactants in the model lead to predictions for the amount of tissue factor and phospholipid that is required to maintain thrombin production in the follicle, as well as to the conclusion that tissue factor pathway inhibitor has little effect on the time that thrombin generation is sustained. Numerical experiments to determine the effect of factor V, which is at a much reduced level in follicular fluid compared to plasma, and thrombomodulin, illustrate the importance for further experimental work to determine values for several parameters that have yet to be reported in the literature.
Project description:To investigate the different function of endometriosis-related infertile patients follicular fluid (EMFF) and follicular fluid in control group (COFF), follicular fluid was collected and used for RNA sequencing.
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples.
Project description:Exosomes have recently been shown to play a key role in cell-to-cell communication through delivery of various functional content, including microRNAs (miRNAs). We investigated the potential roles of exosomal miRNA derived intrafollicular cells in polycystic ovary syndrome (PCOS). Using microarray profiling, a total of 492 miRNAs and 220 miRNAs were found in follicular fluid-derived exosomes and serum-derived exosomes, respectively, in PCOS and non-PCOS females. By excluding miRNAs existing in serum-derived exosomes, we found 179 miRNAs which were specifically expressed in follicular fluid-derived exosomes both in PCOS and non-PCOS females. Using microarray profiling, a total of 492 miRNAs and 220 miRNAs were found in follicular fluid-derived exosomes and serum-derived exosomes, respectively, in PCOS and non-PCOS females. By excluding miRNAs existing in serum-derived exosomes, we found 179 miRNAs which were specifically expressed in follicular fluid-derived exosomes both in PCOS and non-PCOS females.
Project description:Polycystic ovary syndrome (PCOS) is a complex endocrinopathy affecting reproductive aged women, whose etiology has not been fully understood yet. The follicular growth is arrested at preantral stage leading to cyst formation, consequently resulting in anovulatory infertility in these women. As follicular fluid provides the microenvironment for the growing oocyte, molecular profiling of the fluid may provide unique information about pathophysiology associated with follicular development in PCOS. Modification with oligosaccharide chains are known to influence functions of several secreted proteins and these glycoproteins also play a role in disease pathology. The glycoproteomic profile of follicular fluid of PCOS has not been explored in PCOS yet. In the present study, we performed comparative glycoproteomic analysis by first enriching glycoproteins using three different lectins viz. concanavalin A, wheat germ agglutinin and Jacalin from follicular fluid of women with PCOS and controls undergoing in vitro fertilization. Peptides generated by trypsin digestion were labeled with isobaric tags for relative and absolute quantification reagents and analyzed by liquid chromatography tandem mass spectrometry. We identified 10 differentially expressed glycoproteins, in the follicular fluid of women with PCOS compared to control. Two important differentially expressed proteins- SERPINA1 and ITIH4, were consistently upregulated and downregulated respectively, upon validation by Western blotting in follicular fluid and real-time polymerase chain reaction in granulosa cells. These proteins play a role in angiogenesis and extracellular matrix stabilization which are vital for follicle maturation. In conclusion, comparative glycoprotein profiling of follicular fluid from women with PCOS and controls revealed altered expression of proteins which may contribute to defects in follicle development in PCOS pathophysiology.
Project description:Samples of oil and production water were collected from five wells of the Qinghai Oilfield, China, and subjected to GeoChip hybridization experiments for microbial functional diversity profiling. Unexpectedly, a remarkable microbial diversity in oil samples, which was higher than that in the corresponding water samples, was observed, thus challenging previously believed assumptions about the microbial diversity in this ecosystem. Hierarchical clustering separated oil and water samples, thereby indicating distinct functional structures in the samples. Genes involved in the degradation of hydrocarbons, organic remediation, stress response, and carbon cycling were significantly abundant in crude oil, which is consistent with their important roles in residing in oil. Association analysis with environmental variables suggested that oil components comprising aromatic hydrocarbons, aliphatic hydrocarbons, and a polar fraction with nitrogen-, sulfur-, and oxygen-containing compounds were mainly influential on the structure of the microbial community. Furthermore, a comparison of microbial communities in oil samples indicated that the structures were depth/temperature-dependent. To our knowledge, this is the first thorough study to profile microbial functional diversity in crude oil samples. From the Qinghai Oilfield located in the Tibetan Plateau, northwest China, oil production mixtures were taken from four oil production wells (No. 813, 516, 48 and 27) and one injection well (No. 517) in the Yue-II block. The floating oil and water phases of the production mixtures were separated overnight by gravitational separation. Subsequently, the microbial community and the characteristics of the water solution (W813, W516, W48, and W27) and floating crude oil (O813, O516, O48, and O27) samples were analyzed. A similar analysis was performed with the injection water solution (W517).
Project description:Analysis of gingival crevicular fluid (GCF) samples may give information of the identity of unattached (planktonic) subgingival bacteria, the 35 forefront candidates for systemic dispersal via ulcerated periodontal pocket epithelium. Our study represents the first one targeting the identity of bacteria in gingival crevicular fluid. Methodology/Principal findings: We determined bacterial species diversity in GCF samples of a group of periodontitis patients and delineated contributing bacterial and host-associated factors. Subgingival paper point (PP) samples from the same sites were taken for comparison. After DNA extraction, 16S rRNA genes were PCR amplified and DNA-DNA hybridization was performed using a microarray for over 300 bacterial species or groups. Altogether 133 species from 41 genera and 8 phyla 45 were detected with 9 to 62 and 18 to 64 species in GCF and PP samples, respectively, 46 per patient. Projection to latent structures by means of partial least squares (PLS) was applied to the multivariate data analysis. PLS regression analysis showed that species of genera including Campylobacter, Selenomonas, Porphyromonas, Catonella, Tannerella, Dialister, Peptostreptococcus, Streptococcus and Eubacterium had significant positive correlations and the number of teeth with low-grade attachment loss a significant negative correlation to species diversity in GCF samples. OPLS/O2PLS discriminant analysis revealed significant positive correlations to GCF sample group membership for species of genera Campylobacter, Leptotrichia, Prevotella, Dialister, Tannerella, Haemophilus, Fusobacterium, Eubacterium, and Actinomyces. Conclusions/Significance: Among a variety of detected species those traditionally classified as Gram-negative anaerobes growing in mature subgingival biofilms were the main predictors for species diversity in GCF samples as well as responsible for distinguishing GCF samples from PP samples. GCF bacteria may provide new prospects for studying dynamic properties of subgingival biofilms. The microbial profiles of GCF and subgingival plaque were analyzed from 17 subjects with periodontal disease.