Project description:Our molecular understanding of honey bee cellular stress responses is incomplete. Previously, we sought to identify and began functional characterization of the components of the UPR in honey bees. We observed that UPR stimulation resulted in induction of target genes upon and IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA. However, were not able to determine the relative role of the various UPR pathways in gene activation. Our understanding of honey bee signal transduction and transcriptional regulation has been hampered by a lack of tools. After using RNAseq to expand the known UPR targets in the bee, we use the Drosophila melanogaster S2 cell line and honey bee trans and cis elements to investigate the role of the IRE-1 pathway in the transcriptional activation of one of these targets, the honey bee Hsc70-3 gene. Using a luciferase reporter, we show that honey bee hsc70 promoter activity is inducible by UPR activation. In addition, we show that this activation is IRE1-dependent and relies on specific cis regulatory elements. Experiments using exogenous honey bee or fruit fly XBP1S proteins demonstrate that both factors can activate the Hsc70-3 promoter and further support a role for the IRE-1 pathway in control of its expression in the honey bee. By providing foundational knowledge about the UPR in the honey bee and demonstrating the usefulness of a heterologous cell line for molecular characterization of honey bee pathways, this work stands to improve our understanding of this critical species.
2020-03-28 | GSE139368 | GEO
Project description:New Approach Methodologies for Understanding Honey Bee Toxicity
Project description:Here we present the first characterisation of small RNAs in honey bee reproductive tissues. We conclude that small RNAs are likely to play an integral role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of origin-effects on gene expression and reproductive physiology. present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes.
Project description:RNA-Sequencing performed on 177 honey bee whole-brains, divided into "soldier" and "forager" groups from Puerto Rican honey bee colonies.
Project description:Transcriptome sequencing has become the main methodology for analyzing the relationship between genes and characteristics of interests, particularly those associated with diseases and economic traits. Because of its functional superiority, commercial royal jelly (RJ) and its production are major areas of focus in the field of apiculture. Multiple lines of evidence have demonstrated that many factors affect RJ output by activating or inhibiting various target genes and signaling pathways to augment their efficient replication. The coding sequences made available by the Honey Bee Genome Sequencing Consortium have permitted a pathway-based approach for investigating the development of the hypopharyngeal glands (HGs). In the present study, 3573941, 3562730, 3551541, 3524453, and 3615558 clean reads were obtained from the HGs of five full-sister honey bee samples using Solexa RNA sequencing technology. These reads were then assembled into 18378, 17785, 17065, 17105, and 17995 unigenes, respectively, and aligned to the DFCI Honey Bee Gene Index database. The differentially expressed genes (DEGs) data were also correlated with detailed morphological data for HGs acini. The results identify areas that warrant further study, including those that can be used to improve honey bee breeding techniques and help ensure stable yields of RJ with high quality traits.
Project description:Honey bee non-CG DNA hydroxymethylation is enriched in the introns, which supplements previous findings that honey bee CG DNA methylation is enriched in exons.
Project description:Background: Honey bee is a major insect used for pollination of a number of commercial crops worldwide. However, the number of managed honey bee colonies has recently declined in several countries, and a number of possible causes are proposed. Although the use of honey bees for pollination can be considered as disruption of the habitat, its effects on honey bees' physiology have never been addressed. In Japan, more than 100 thousands colonies are annually used for pollination, and intriguingly 80% of them are used in greenhouses. Recently, honey bee colonies have often collapsed when they are introduced into greenhouses. Thus, to suppress colony collapses and maintain the number of worker bees in the colonies are essential for successful long-term pollination in greenhouses and recycling honey bee colonies.
Project description:In this study we addressed whether the transcriptome profile in the honey bee brain is similar for two major parasites of honey bee, Varroa destructor and Nosema ceranae. Honey bees parasitized by these two parasites show accelerated behavioral maturation and deficiences in orientation and learning/memory that we hoped to characterized at the transcriptomic level.
Project description:The present study is the first study to identify the involvement of mRNA, lncRNAs, circRNAs and miRNA in the ovary of honey-bee workers.We predicted 10271 mRNAs, 7235 lncRNAs, 11794 circRNAs and 164 miRNAs in the ovary of honey bee workers.
Project description:Honey bee non-CG DNA hydroxymethylation is enriched in the introns, which supplements previous findings that honey bee CG DNA methylation is enriched in exons. Bisulfite sequencing combined with Pvu-Seq to distinguish 5-methylcytosine from 5-hydroxymethylcytosine and RNA-Seq