Project description:Cold storage (CS) is widely used to extend fruit postharvest. In peach, chilling injuries may cause intense juice loss leading to a dry ‘woolly’ texture of the fruit flesh. The disturbance, named woolliness, is associated to abnormal pectin metabolism and results in anatomical and physiological alterations. Application of gibberellic acid (GA) at the initial stages of pit hardening has been shown to impair woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcription analyses to investigate the effects of GA application and CS of peaches. Approximately half (48.26%, 13846) of the investigated genes exhibited significant differential expression in response to the treatments. Gene ontology classes associated to cellular and developmental processes were overrepresented among the differentially regulated genes, whereas sequences classified in cell death and immune response categories were underrepresented. Gene set enrichment analyses demonstrated a predominant role of CS in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone metabolism and signaling exhibited a more complex transcriptional response to the factors, indicating an extensive network of crosstalk between GA and low temperatures. Time course transcriptional profiling analyses also confirmed the involvement of cell wall metabolism genes in woolliness onset in peach. Overall, our results provide further insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach.
Project description:Cold storage (CS) is widely used to extend fruit postharvest. In peach, chilling injuries may cause intense juice loss leading to a dry âwoollyâ texture of the fruit flesh. The disturbance, named woolliness, is associated to abnormal pectin metabolism and results in anatomical and physiological alterations. Application of gibberellic acid (GA) at the initial stages of pit hardening has been shown to impair woolliness incidence, however the mechanisms controlling the response remain unknown. We have employed genome wide transcription analyses to investigate the effects of GA application and CS of peaches. Approximately half (48.26%, 13846) of the investigated genes exhibited significant differential expression in response to the treatments. Gene ontology classes associated to cellular and developmental processes were overrepresented among the differentially regulated genes, whereas sequences classified in cell death and immune response categories were underrepresented. Gene set enrichment analyses demonstrated a predominant role of CS in repressing the transcription of genes associated to cell wall metabolism. In contrast, genes involved in hormone metabolism and signaling exhibited a more complex transcriptional response to the factors, indicating an extensive network of crosstalk between GA and low temperatures. Time course transcriptional profiling analyses also confirmed the involvement of cell wall metabolism genes in woolliness onset in peach. Overall, our results provide further insights on the mechanisms controlling the complex phenotypes associated to postharvest textural changes in peach. Four samples (CONT, CONTcs, GA3, GA3cs), each with three biological replicates (R1, R2 and R3), were analyzed. Control samples (CONT and CONTcs) consist of peach mesocarp not treated with GA3 at pit hardening, and either assayed at harvest (CONT) or after 15 days of cold storage (CONTcs). GA3 samples (GA3 and GA3cs) consist of peach mesocarp treated with GA3 at pit hardening, and either assayed at harvest (GA3) or after 15 days of cold storage (GA3cs).
Project description:Background: Anthocyanins are the most important compounds for nutritional quality and economic values of blood orange. However, there are few reports on the pre-harvest treatment accelerate the accumulation of anthocyanins in postharvest blood orange fruit. Here, we performed a comparative Transcriptome and metabolomics analysis to elucidate the underlying mechanism involved in seasonal drought (SD) treatment during fruit expansion stage on anthocyanin accumulation in postharvest ‘Tarocco’ blood orange fruit. Results: Our results showed that SD treatment slowed down the fruit enlargement and increased the sugar accumulation during fruit development and matured period. Obviously, under SD treatment, the accumulation of anthocyanin in blood orange fruit during postharvest storage was significantly accelerated and markedly higher than that in CK. Meanwhile, the total flavonoids and phenols contents and antioxidant activity in SD treatment fruit were also sensibly increased during postharvest storage. Based on metabolome, we found that substrates required for anthocyanin biosynthesis, such as amino acids and their derivatives, and phenolic acids, have significantly accumulated and higher in SD treated mature fruit compared with that of CK. Further according to the results of transcriptome data and weighted gene coexpression correlation network analysis (WGCNA) analysis, phenylalanine ammonia-lyase (PAL3) was considered key structural gene. qRT-PCR analysis verified that the PAL3 was highly expressed in SD treated postharvest stored fruit and was significantly positively correlated with the anthocyanin content. Moreover, we found that other structural genes in anthocyanin biosynthesis pathway were also upregulated under SD treatment through transcriptome data and qRT-PCR analysis. Conclusions: The findings suggest that SD treatment promotes the accumulation of substrates necessary for anthocyanin biosynthesis during fruit ripening process, and activates the expression of anthocyanin biosynthesis pathway genes during postharvest storage period, especially PAL3, co-contributed to the rapid accumulation of anthocyanin. The present study provides a theoretical basis for postharvest quality control and water-saving utilization of blood orange fruit.
Project description:We report on the kiwifruit postharvest phase through an approach consisting of 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison protein content. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times. By lining up kiwifruit postharvest processing to a proteomic depiction, this study integrates previous observations on protein content in postharvest pomes treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Project description:Both exogenously supplied and transgenic induced cytokinin production can effectively delay senescence of broccoli florets during postharvest storage. However, a substantial comparison between the mechanisms of these two treatments on delaying broccoli florets senescence was absent. Here, we conduct microarray analysis on broccoli florets of N6-benzylaminopurine treated and ipt-transgenic broccoli that harbor a senescence-associated-gene promoter triggering isopentenyltransferase gene expression during postharvest storage. Analysis used RNA of Green King inbred line 104 as control sample for comparison to the experimental samples of ipt-transgenic line 102, 103 and parental line Green King as well as 10 ppm BA treated Green King at harvest and after postharvest storage at 25 centigrade in the dark for 4 days.
Project description:Penicillium digitatum is the pathogen of Green mold in Postharvest citrus. After inoculating Penicillium digitatum into the wound of citrus to infect it, transcriptome sequencing was carried out and compared with the results of transcriptome sequencing of Penicillium digitatum before inoculation in order to screen the differentially expressed genes and reveal its infection mechanism.
Project description:The goal of the study is to perform unbiased transcriptome analysis on spinal cord samples of immunized GA-CFP mice to configure the effect of OVA-GA(10) vaccination in a C9orf72 mouse model.
Project description:In order to investigate the effects of Glatiramer acetate (GA) in treatment-naïve RR-MS female patients’ B cells we performed Affymetrix Gene-Chip Human Genome HG-U133A_2 hybridization experiments Transcriptome analysis before and after acute (six hours in vitro) and chronic (six months in vivo) treatment with GA. We compared the transcriptional profiles of B cells, from the above-mentioned patients, treated or not with GA for 6 hours in vitro, and before and after six months of GA treatment in vivo.