Project description:The anaerobic digestion microbiomes has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and phenotypics, in their ability to reflect the full-scale anaerobic digestion microbiome. The phenotypic fingerprinting reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and phenotypic traits, yielded certain similar features yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, phenotypic fingerprinting is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.
2014-12-03 | GSE63781 | GEO
Project description:Anaerobic digestion of whiskey byproducts: Effects of pretreatment and digestion temperature on performance and microbiology
Project description:Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L-1). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers. 18 samples; Triplicate PHB-enriched bacterial communities recovered from activated sludge were exposed to nanoparticle (TiO2 or Ag) or AgNO3 (as a silver control) or were not exposed to an nanoparticles (control) to determine if the naoparticles affected PHB production.