Project description:Single-cell RNA-sequencing analyses were performed on pancreatic tumors from KPPC mice and PPSSC mice, so as to identify the changes of tumor immune microenvironment upon Trp53 and Smad4 deletion without KRAS mutation.
Project description:We employed dual-recombinase genetic mouse models of spontaneous PDAC mice (KPPF;Col1smaKO) to delete Col1 (type I collagen) specifically in myofibroblasts, in comparison with control KPPF mice. Single-cell RNA-sequencing analyses were performed on unfractionated live cell mixtures from pancreatic tumors of KPPF mice and KPPF;Col1smaKO mice, to investigate the impact of myofibroblast-specific Col1 deletion on tumor microenvironment.
Project description:Circulating Tumor Cells (CTCs) are shed from primary tumors into the bloodstream, mediating the hematogenous spread of cancer to distant organs. Using a pancreatic cancer mouse model, we applied a microfluidic device to isolate CTCs independently of tumor epitopes, subjecting these to single cell RNA-sequencing. This study was conducted to determine the heterogeneity of pancreatic CTCs and to compare these CTCs to matched primary tumors, cell line controls (NB508 cancer cell line and MEF non-cancer cell line), primary tumor single cells, and normal leukocytes/WBCs. We profiled RNA from 75 single cells circulating in mouse blood enriched for circulating tumor cells from 5 mice, 12 single cells from a mouse embryonic fibroblast cell line, 16 single cells from the nb508 mouse pancreatic cancer cell line, 12 single mouse white blood cells, 18 single GFP lineage-traced circulating tumor cells from two mice, 20 single GFP lineage-traced cancer cells from the primary pancreatic tumor of a mouse, and 34 dilutions to 10 or 100 picograms of total RNA from mouse primary pancreatic tumors from 4 mice.
Project description:RNA-sequencing analyses were performed on cancer cell lines from KPPC and PPSSC pancreatic tumors, so as to identify the changes of tumor immune microenvironment upon Trp53 and Smad4 deletion without KRAS mutation.
Project description:KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) is highly immunosuppressive and resistant to targeted therapies, immune checkpoint blockade and engineered T cells. In this study, we performed a systematic high throughput combinatorial drug screen and identified a synergistic interaction between the MEK inhibitor trametinib and the multi- kinase inhibitor nintedanib. Using single cell RNA sequencing and immunophenotyping, we show that the combination therapy reprograms the immunosuppressive microenvironment and primes cytotoxic and memory T cells to infiltrate the tumors, thereby sensitizing mesenchymal PDAC to PD-L1 inhibition.
Project description:Single-cell RNA-sequencing analyses were performed on unfractionated live cell mixtures or sorted fibroblasts from pancreatic tumors of KPC;YFP mice, so as to investigate the functional heterogeneity of cancer-associated fibroblasts in early-stage and late-stage tumors.
Project description:Single-cell RNA-sequencing analyses were performed on unfractionated live cell mixtures or YFP sorted cancer cells from pancreatic tumors or liver mets of KPC;YFP control mice and KPC;SnailKO;TwistKO;YFP mice, so as to investigate the Epithelial-to-Mesenchymal Transition (EMT) of cancer cells in primary tumors and metastases. The effect of cancer-specific knockout of EMT transcription factor Snail and Twist on cancer cell EMT was studied by comparing KPC;YFP control mice and KPC;SnailKO;TwistKO;YFP mice. Each sample was in an individual folder containing the related fastq raw data files.
Project description:Background & Aims: Pancreatic ductal adenocarcinomas (PDAC) are characterized by fibrosis and an abundance of cancer-associated fibroblasts (CAFs). We investigated strategies to disrupt interactions among CAFs, the immune system, and cancer cells, focusing on adhesion molecule cadherin 11 (CDH11), which has been associated with other fibrotic disorders and is expressed by activated fibroblasts. Methods: We compared levels of CDH11 mRNA in human pancreatitis and pancreatic cancer tissues and cells, compared with normal pancreas, and measured levels of CDH11 protein in human and mouse pancreatic lesions and normal tissues. We crossed p48-Cre;LSL-KrasG12D/+;LSL-Trp53R172H/+ (KPC) mice with CDH11-knockout mice and measured survival times of offspring. Pancreata were collected and analyzed by histology, immunohistochemistry, and (single-cell) RNA sequencing; RNA and proteins were identified by imaging mass cytometry. Some mice were given injections of PD1 antibody or gemcitabine and survival was monitored. Pancreatic cancer cells from KPC mice were subcutaneously injected into Cdh11+/+ and Cdh11–/– mice and tumor growth was monitored. Pancreatic cancer cells (mT3) from KPC mice (C57BL/6), were subcutaneously injected into Cdh11+/+ (C57BL/6J) mice and mice were given injections of antibody against CDH11, gemcitabine, or small molecule inhibitor of CDH11 (SD133) and tumor growth was monitored. Results: Levels of CDH11 mRNA and protein were significantly higher in CAFs than in pancreatic cancer epithelial cells, human or mouse pancreatic cancer cell lines, or immune cells. KPC/Cdh11+/– and KPC/Cdh11–/– mice survived significantly longer than KPC/Cdh11+/+ mice. Markers of stromal activation entirely surrounded pancreatic intraepithelial neoplasias in KPC/Cdh11+/+ mice and incompletely in KPC/Cdh11+/– and KPC/Cdh11–/– mice, whose lesions also contained fewer FOXP3+ cells in the tumor center. Compared with pancreatic tumors in KPC/Cdh11+/+ mice, tumors of KPC/Cdh1+/– mice had increased markers of antigen processing and presentation; more lymphocytes and cytokines associated with lymphocyte infiltration; decreased extracellular matrix components; and reductions in markers and cytokines associated with immunosuppression. Administration of the PD1 antibody did not prolong survival of KPC mice with 0, 1, or 2 alleles of Cdh11. Gemcitabine extended survival only of KPC/Cdh11+/– and KPC/Cdh11–/– mice or reduced subcutaneous tumor growth in mT3 engrafted Cdh11+/+ mice given in combination with the CDH11 antibody. A small molecule inhibitor of CDH11 reduced growth of pre-established mT3 subcutaneous tumors only if T and B cells were present in mice. Conclusions: Knockout or inhibition of CDH11, which is expressed by CAFs in the pancreatic tumor stroma, reduces growth of pancreatic tumors, increases their response to gemcitabine, and significantly extends survival of mice. CDH11 promotes immunosuppression and extracellular matrix deposition, and might be developed as a therapeutic target for pancreatic cancer.