Project description:Although DNA methylation patterns are generally considered to be faithfully inherited in Arabidopsis thaliana (Arabidopsis), there is evidence of reprogramming during both male and female gametogenesis. The gynoecium is the floral reproductive organ from which the ovules develop and generate meiotically derived cells that give rise to the female gametophyte. It is not known whether the gynoecium can condition genomic methylation in the ovule or the developing female gametophyte. We performed whole genome bisulfite sequencing to characterize the methylation patterns that prevail in the genomic DNA of pre-meiotic gynoecia of wild-type and three mutants defective in genes of the RNA-directed DNA methylation pathway (RdDM): ARGONAUTE4 (AGO4), ARGONAUTE9 (AGO9), and RNA-DEPENDENT RNA POLYMERASE6 (RDR6). By globally analyzing transposable elements (TEs) and genes located across the Arabidopsis genome, we show that DNA methylation levels are similar to those of gametophytic cells rather than those of sporophytic organs such as seedlings and rosette leaves. We show that none of the mutations completely abolishes RdDM, suggesting strong redundancy within the methylation pathways. Among all, ago4 mutation has the strongest effect on RdDM, causing more CHH hypomethylation than ago9 and rdr6. We identify 22 genes whose DNA methylation is significantly reduced in ago4, ago9 and rdr6 mutants, revealing potential targets regulated by the epigenetic landscape in premeiotic gyneocia. Our results indicate that drastic changes in methylation levels in all three contexts occur in female reproductive organs at the sporophytic level, prior to the alternation of generations within the ovule primordium, offering a possibility to start identifying the function of specific genes acting in the establishment of the female gametophytic phase of the Arabidopsis life cycle.
Project description:Small RNA diversity and function has been widely characterized in various tissues of the sporophytic generation of the angiosperm model Arabidopsis thaliana. In contrast, there is limited knowledge about small RNA diversity and their roles in developing male gametophytes. We thus carried out small RNA sequencing on RNA isolated from four stages of developing Arabidopsis thaliana pollen. Spores from 4 stages of pollen development (UNM: Uninucleate microspore M-bM-^@M-^S BCP: Bicellular pollen M-bM-^@M-^S TCP: Tricellular pollen M-bM-^@M-^S MP: Mature pollen) were isolated using a percoll gradient-based method (Honys and Twell, 2004) and the small RNA fraction for each sample was isolated and sequenced by Illumina technology. Reference: Honys, D. and Twell, D. (2004) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5/11/R85.
Project description:Plant microRNAs (miRNAs) act as negative regulators of gene expression by slicing target transcripts or inhibiting the translation, and a number of miRNAs play important roles in development. In order to investigate the potential function of miRNAs during male gametogenesis in rice, we obtained both gene and small RNA expression profiles by combining Affymetrix microarray and high-throughput sequencing technologies. In genome-scale, we compared arrays and sRNA-Seq datasets in different stages/organs of rice by applying computational and statistical approaches. Subsequently, we identified 13363 expressed genes and 104 expressed unique miRNAs in pollen, thus, we constructed an interaction network of miRNA-target basing on two datasets. By employing enrichment analysis, we found miRNA-regulated targets involved in both up and down pathways, but predominantly in down pathways including 30 GO biological processes and 34 KEGG pathways. Our findings indicated that miRNAs plays a broad regulatory role during male gametophyte development in rice. This SuperSeries is composed of the following subset Series: GSE29080: Gene Expression Profiling during Male Gametophyte Development in Rice GSE29178: Profiling of small RNA populations in tricellular pollen of rice
Project description:In sexual reproduction, a proper communication and cooperation between male and female organs and tissue are essential for male and female gametes to unite. In flowering plants, female sporophytic tissues and gametophyte direct a male pollen tube towards an egg apparatus, which consists of an egg cell and two synergid cells. The cell-cell communication between the pollen tube and the egg apparatus, such as the reception of a signal from the egg apparatus at the pollen tube, makes the tip of pollen tube rapture to release the sperm cell. To isolate male factors involved in the interaction between a pollen tube and an egg apparatus, we focused on receptor-like kinases (RLKs), which are extensively diversified in the flowering plant lineage to comprise a large monophyletic gene family. Approximately 620 members were found in the Arabidopsis thaliana genome. Expression patterns of 558 RLKs were analyzed using an Affymetrix ATH1 microarray of A. thaliana. We focused on two RLKs, ANXUR1 (ANX1) and ANXUR2 (ANX2), and characterized their function. Here we report that pollen tubes of anx1/anx2 ruptured before arriving at the egg apparatus, suggesting that ANX1 and ANX2 are male factors controlling pollen tube behavior with directing rupture at proper timing. Furthermore, ANX1 and ANX2 were the most closely related paralogs to a female factor FERONIA/SIRENE controlling pollen tube behavior expressed in synergid cells. Our finding shows that the coordinated behaviors of female and male reproductive apparatuses are regulated by the sister genes, whose duplication might play a role in the evolution of fertilization system in flowering plants.
Project description:In flowering plants, pollen development is under a dynamic and well-orchestrated transcriptional control, characterized by an early phase with high transcript diversity and a late post-mitotic phase skewed to a cell-type specific-transcriptome. Such transcriptional changes require a balance between synthesis and degradation of mRNA transcripts, the latter being initiated by deadenylation. The CCR4-NOT complex is the main evolutionary conserved deadenylase complex in eukaryotes, and its function is essential during germline specification in animals. We hypothesised that the CCR4-NOT complex might play a central role in mRNA turnover during microgametogenesis in Arabidopsis. Disruption of NOT1 gene, which encodes the scaffold protein of the CCR4-NOT complex, showed abnormal seed set. Genetic analysis failed to recover homozygous progeny and reciprocal crosses confirmed reduced transmission through the male and female gametophytes. Concordantly not1 embryo sacs showed delayed development and defects in embryogenesis. not1 pollen grains exhibited abnormal male germ unit configurations and failed to germinate. Transcriptome analysis of pollen from not1/+ mutants revealed that lack of NOT1 leads to an extensive transcriptional deregulation during microgametogenesis. Therefore, our work establishes NOT1 as an important player during gametophyte development in Arabidopsis.
Project description:Pollen is the male gametophyte of land plants. Proper development and maturation of pollen is necessary for the successful reproduction of seed plants. This process involves sophisticated coordination between sporophytic and gametophytic tissues in anthers. To advance the mechanistic studies of anther development, additional players need to be discovered for a comprehensive understanding of the underlying regulatory network. Here we show that the Arabidopsis dual specificity tyrosine phophorylated and regulated kinase (DRYK), AtYAK1, is essential for development of rosette leaves and the male but not female gametophyte in Arabidopsis. Arabidopsis mutant plants carrying a mutation in AtYAK1 produce developmentally stalled microspores, likely because of the defects in the two consecutive mitosis steps in the post-meiotic maturation process of pollen. The mutation of AtYAK1 has a significant effect on gene expression programs in developing pollen. Transcritpome analysis of atyak1 revealed downstream genes in families of protein kinases, transporters and transcription factors, which potentially contribute to pollen development. This study represents the first molecular characterization of DYRK in the plant kingdom. Our results also imply that the regulation of cytokinesis by DYRKs is evolutionally conserved in fungus, fruit fly, animals and plants.
Project description:To investigate the potential function of miRNAs during male gametogenesis in rice, we first obtained gene expression profiles by using Affymetrix microarray technologies. In genome-scale, we found a common characteristic shared by rice and Arabidopsis, which vast of genes are down regulated from Pb to Pc stage. next, a total of 13363 genes were detected during the gametophyte development in rice, which contains 2925 pollen-enriched/-specific genes including 107 transcription factors. We also analyzed the microarray-based expression patterns of genes in miRNA pathways, and found 3 pollen-specific AGO genes (AGO12, AGO13 and AGO17).