Project description:Transcriptional profiling of midgut tissues isolated from Rhipicephalus microplus and Rhipicephalus decoloratus females at day 20 post infestation. This enabled the identification of transcripts that are species-specific or shared between the two tick species tested.
Project description:Organophosphate resistant and susceptible tick larvae from laboratory strains of the southern cattle tick, Rhipicephalus (Boophilus) microplus were exposed to low doses of the organophosphate (OP) acaricide, coumaphos. Serial Analysis of Gene Expression (SAGE) was used to analyze differential gene expression in response to OP treatment and to compare the responses in OP-treated and untreated resistant and susceptible tick larvae. ** note: Contact person is Felix D. Guerrero. email: felix.guerrero@ars.usda.gov Keywords: SAGE, acaricide response, organophosphate.
Project description:In addressing R. microplus - A. marginale interactions, we propose and test three linked hypotheses. The first is that the tick gene response is organ specific: the midgut gene regulation is unique during feeding and during acquisition of A. marginale as compared to the salivary gland. This distinction is relevant as the two organs serve very different roles in the transmission biology of A. marginale with early survival and replication within the midgut epithelium, composed of highly phagocytic cells, required for initial colonization while a second round of replication in the salivary gland acini, composed of highly secretory cells, is required for transmission of an infectious dose in the saliva. Importantly, both the midgut epithelium and salivary glands have been identified as separate and distinct barriers for transmission of A. marginale and thus represent two potential sites where transmission could be blocked. The second hypothesis to be tested is that the salivary gland transcriptome is temporally dynamic. Initiation of tick attachment and feeding involves secretion of a virtual pharmacopeia including lytic enzymes, anticoagulants, and inhibitors of the mammalian innate immune and nocioceptive systems. Concomitantly, the acini provide an environment where A. marginale replicates >100 fold and are secreted into the saliva. Prior studies show that duration of feeding is a critical component of transmission efficiency, with increased efficiency positively correlated with time of tick feeding. The third hypothesis to be tested is that A. marginale colonization does not significantly modulate the tick midgut and salivary gland transcriptome. This hypothesis is based on observations by ourselves and others that tick infection does not impart a significant fitness cost on the vector. This is in contrast to other bacterial and protozoal pathogens that have dramatic effects on success of tick attachment, engorgement, and survival. A. marginale, similar to other tick-borne pathogens in the Family Anaplasmataceeae, is believed to have evolved from an arthropod-specific bacterium with relatively late adaptation to specific niches in mammalian hosts. Consequently, we predict that A. marginale is well adapted to its tick vector and utilizes the normal signaling pathways of the feeding tick with few, if any, effects on the midgut and salivary gland transcriptome. In this manuscript, we report the testing of these three hypotheses and present the results in context of the vector-pathogen-mammalian host interaction at the time of transmission.