Project description:The tomato hind, Cephalopholis sonnerati, is a bottom-dwelling coral reef fish, which is widely distributed in the Indo-Pacific and Red Sea. C. sonnerati also features complex social structures and behaviour mechanisms. Here, we present a high-quality, chromosome-level genome assembly for C. sonnerati that was derived using PacBio sequencing and Hi-C technologies. A 1043.66 Mb genome with an N50 length of 2.49 Mb was assembled, produced containing 795 contigs assembled into 24 chromosomes. Overall, 97.2% of the complete BUSCOs were identified in the genome. A total of 26,130 protein-coding genes were predicted, of which 94.26% were functionally annotated. Evolutionary analysis revealed that C. sonnerati diverged from its common ancestor with E. lanceolatus and E. akaara approximately 41.7 million years ago. In addition, comparative genome analyses indicated that the expanded gene families were highly enriched in the sensory system. Finally, we found the tissue-specific expression of 8108 genes. We found that these tissue-specific genes were highly enriched in the brain. In brief, the high-quality, chromosome-level reference genome will provide a valuable genome resource for studies of the genetic conservation, resistance breeding, and evolution of C. sonnerati.
Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.