Project description:Global climate change increasingly challenges agriculture with flooding and salinity. Among strategies to enhance crop resilience to these stresses, we showed two mangrove strains that can enhance flooding and salinity tolerance in rice plants. Two strains massively enhanced the growth and yield of Oryza sativa cv. Nipponbare under hydroponic growth conditions with and without salt treatment. The bacteria-induced transcriptome changes in O. sativa roots related to ABA-signaling with suberin deposition in root tissues explain the altered responses of colonized rice plants to hypoxic and saline stress conditions. While enhancing yield and grain quality, bacterially colonized rice plants also show much earlier flowering, thereby massively shortening the life cycle of rice plants and opening the possibility for an additional harvest per year. These results show that microbes can be a powerful tool for enhancing the yield and resilience of rice to hypoxic and saline stress conditions.
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray
Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray B. phytofirmans type strain PsJN was originally isolated as a contaminant from surface-sterilized, Glomus vesculiferum-infected onion roots (Nowak et al., 1998), whereas strain P6 RG6-12 was isolated from the rhizosphere of a grassland in the Netherlands (Salles et al., 2006). This strain was selected based on its similarity to strain PsJN based on 16S rRNA gene homology, and similar phenotypic features. Both strains were generally cultivated on King's medium (King et al., 1954). For the mutant AHL to the strain B. phytofirmans PsJN a quorum quenching approach as described by Wopperer et al., 2006 was employed. Plasmid pMLBAD-aiiA, which contains aiiA, the Bacillus sp. 240B1 lactonase gene, was transferred to B. phytofirmans PsJN by triparental mating as described by de Lorenzo and Timmis (1994). 2 cultivars, 3 endophytes
Project description:Nipponbare performs poorly in phosphorus (P) deficient soil whereas a Nipponbare-derived NIL containing the Pup1 allele of donor parent Kasalath is tolerant to P deficiency. In this experiment we compared gene expression patterns in roots of this NIL to Nipponbare, grown either in a P deficient or P fertilized soil. The aim is to separate constitutive differences in expression from those induced by P deficiency. Keywords: genotype comparison, constitutive differential expression
Project description:Plants capture solar energy and atmospheric carbon dioxide (CO2) through photosynthesis, which is the primary component of crop yield, and needs to be increased considerably to meet the growing global demand for food. Environmental stresses, which are increasing with climate change, adversely affect photosynthetic carbon metabolism (PCM) and limit yield of cereals such as rice (Oryza sativa) that feeds half the world. To study the regulation of photosynthesis, we developed a rice gene regulatory network and identified a transcription factor HYR (HIGHER YIELD RICE) associated to PCM, which on expression in rice enhances photosynthesis under multiple environmental conditions, determining a morpho-physiological program leading to higher grain yield (GY) under normal, drought and high temperature stress conditions. We show HYR is a master regulator, directly activating photosynthesis genes, cascades of transcription factors and other downstream genes involved in PCM and yield stability under drought and high temperature environmental stress conditions. To assess the role of increased HYR expression in rice, whole-genome microarrays were used to generate gene expression profiles of rice cultivar Nipponbare transformed with an overexpression construct of the HYR gene (Loc_Os03g02650) under control of the CaMV 35S promoter, along with control wild-type (WT) lines.