Project description:RNA interference (RNAi) has considerable potential as a therapeutic strategy, but the development of efficient in vivo RNA delivery methods remains challenging. To this end, we designed and synthesized chemically modified interfering nanoparticles (iNOPs) composed of functionalized poly-l-lysine dendrimers modified with reducible spacers to facilitate release of small interfering RNAs (siRNAs) in vivo. We show that the novel siRNA-iNOP complexes mediate efficient gene-specific RNAi in cultured cells and in mice, where they display enhanced tissue-targeting capabilities. At a clinically feasible dose of 1 mg kg-1, apolipoprotein B (apoB) siRNA-iNOP complexes achieved ∼40-45% reduction of liver apoB mRNA and plasma apoB protein levels within 48 h of administration to mice, without apparent toxicity. Collectively, these findings demonstrate that siRNA delivery by the modified reducible iNOPs can provide a clinically significant and potentially tissue-specific new approach for RNAi therapy.
Project description:Melatonin (N-acetyl-5-methoxytryptamine) is reported to improve mood disorders in perimenopausal women and gut microbiome composition is altered during menopausal period. The possible role of microbiome in the treatment effect of melatonin on menopausal depression remains unknown. Here, it is shown that melatonin treatment reverses the gut microbiota dysbiosis and depressive-like behaviors in ovariectomy (OVX) operated mice. This effect of melatonin is prevented by antibiotic cocktails (ABX) treatment. Transferring microbiota harvested from adolescent female mice to OVX-operated mice is sufficient to ameliorate depressive-like behaviors. Conversely, microbiota transplantation from OVX-operated mice or melatonin-treated OVX-operated mice to naïve recipient mice exhibits similar phenotypes to donors. The colonization of Alistipes Inops, which is abundant in OVX-operated mice, confers the recipient with depressive-like behaviors. Further investigation indicates that the expansion of Alistipes Inops induced by OVX leads to the degradation of intestinal tryptophan, which destroys systemic tryptophan availability. Melatonin supplementation restores systemic tryptophan metabolic disorders by suppressing the growth of Alistipes Inops, which ameliorates depressive-like behaviors. These results highlight the previously unrecognized role of Alistipes Inops in the modulation of OVX-induced behavioral disorders and suggest that the application of melatonin to inhibit Alistipes Inops may serve as a potential strategy for preventing menopausal depressive symptoms.
Project description:Non-small cell lung cancer (NSCLC) remains the most common cause of cancer death worldwide due its resistance to chemotherapy and aggressive tumor growth. Polo-like kinase 1 (PLK1) is a serine-threonine protein kinase which is overexpressed in cancer cells, and plays a major role in regulating tumor growth. A number of PLK1 inhibitors are in clinical trial; however, poor tumor bioavailability and off-target effects limit their efficacy. Short-interfering-RNA (siRNA) holds promise as a class of therapeutics, which can selectively silence disease-causing genes. However, siRNA cannot enter cells without a delivery vehicle. Herein, we investigated whether RNAi-interfering nanoparticles could deliver siRNA to NSCLC cells and silence PLK1 expression in vitro and in vivo. iNOP-7 was non-toxic, and delivered siRNA with high efficiency to NSCLC cells. iNOP-7-PLK1 siRNA silenced PLK1 expression and reduced NSCLC growth in vitro. Notably, iNOP-7 delivered siRNA to orthotopic lung tumors in mice, and administration of iNOP-7-PLK1 siRNA reduced lung tumor burden. These novel data show that iNOP-7 can deliver siRNA against PLK1 to NSCLC cells, and decrease cell proliferation both in vitro and in vivo. iNOP-7-PLK1 siRNA may provide a novel therapeutic strategy for the treatment of NSCLC as well as other cancers which aberrantly express this gene.