Project description:Experiment: Expression profiling in breast cancer brain metastases (BC) compared to breast cancers (BC) and primary brain tumors (prBT). The objectives are to identify expression profiles that are specific to BCBM in order to identify new molecular biomarkers. The characterization of the BCBM samples included adjacent genetic techniques.
Project description:Purpose: There is an unmet clinical need for biomarkers to identify breast cancer patients who are at increased risk of developing brain metastases. The objective is to identify gene signatures and biological pathways associated with HER2+ brain metastasis. Experimental Design: Gene expression of 19 HER2+ breast cancer brain metastases was compared with HER2+ nonmetastatic primary tumors. Gene Set Enrichment Analysis was used to identify a signature, which was evaluated for correlation with BRCA1 mutation status and clinical outcome using published microarray datasets and for correlation with pharmacological inhibition by a PARP inhibitor and temozolomide using published microarray datasets of breast cancer cell lines. Results: A BRCA1 Deficient-Like (BD-L) gene signature is significantly correlated with HER2+ metastases in both our and an independent cohort. BD-L signature is enriched in BRCA1 mutation carrier primary tumors and HER2-/ER- sporadic tumors, but high values are found in a subset of ER+ and HER2+ tumors. Elevated BD-L signature in primary tumors is associated with increased risk of overall relapse, brain relapse, and decreased survival. The BD-L signature correlates with pharmacologic response to PARP inhibitor and temozolomide in two independent microarray datasets, and the signature outperformed four published gene signatures of BRCA1/2 deficiency. Conclusions: The BD-L signature is enriched in breast cancer brain metastases and identifies a subset of primary tumors with increased propensity for brain metastasis. Furthermore, this signature may serve as a biomarker to identify sporadic breast cancer patients who could benefit from a therapeutic combination of PARP inhibitor and temozolomide. Gene expression of 19 HER2+ human breast cancer brain metastases was compared with gene expression of 19 HER2+ nonmetastatic primary human breast tumors.
Project description:Gene Expression Profiling of a Mouse Xenograft Model of “Triple-Negative” Breast Cancer Brain Metastases With and Without Vorinostat Treatment. Purpose: As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-negative breast cancer. Experimental Design: The 231-BR brain trophic subline of the MDA-MB-231 human breast cancer cell line was injected into immunocompromised mice for pharmacokinetic and metastasis studies. Pharmacodynamic studies compared histone acetylation, apoptosis, proliferation, and DNA damage in vitro and in vivo. Results: Following systemic administration, uptake of [14C]vorinostat was significant into normal rodent brain and accumulation was up to 3-fold higher in a proportion of metastases formed by 231-BR cells. Vorinostat prevented the development of 231-BR micrometastases by 28% (P = 0.017) and large metastases by 62% (P < 0.0001) compared with vehicle-treated mice when treatment was initiated on day 3 post-injection. The inhibitory activity of vorinostat as a single agent was linked to a novel function in vivo: induction of DNA double-strand breaks associated with the down-regulation of the DNA repair gene Rad52. Conclusions: We report the first preclinical data for the prevention of brain metastasis of triple-negative breast cancer. Vorinostat is brain permeable and can prevent the formation of brain metastases by 62%. Its mechanism of action involves the induction of DNA double-strand breaks, suggesting rational combinations with DNA active drugs or radiation.
Project description:Gene Expression Profiling of a Mouse Xenograft Model of â??Triple-Negativeâ?? Breast Cancer Brain Metastases With and Without Vorinostat Treatment. Purpose: As chemotherapy and molecular therapy improve the systemic survival of breast cancer patients, the incidence of brain metastases increases. Few therapeutic strategies exist for the treatment of brain metastases because the blood-brain barrier severely limits drug access. We report the pharmacokinetic, efficacy, and mechanism of action studies for the histone deactylase inhibitor vorinostat (suberoylanilide hydroxamic acid) in a preclinical model of brain metastasis of triple-negative breast cancer. Experimental Design: The 231-BR brain trophic subline of the MDA-MB-231 human breast cancer cell line was injected into immunocompromised mice for pharmacokinetic and metastasis studies. Pharmacodynamic studies compared histone acetylation, apoptosis, proliferation, and DNA damage in vitro and in vivo. Results: Following systemic administration, uptake of [14C]vorinostat was significant into normal rodent brain and accumulation was up to 3-fold higher in a proportion of metastases formed by 231-BR cells. Vorinostat prevented the development of 231-BR micrometastases by 28% (P = 0.017) and large metastases by 62% (P < 0.0001) compared with vehicle-treated mice when treatment was initiated on day 3 post-injection. The inhibitory activity of vorinostat as a single agent was linked to a novel function in vivo: induction of DNA double-strand breaks associated with the down-regulation of the DNA repair gene Rad52. Conclusions: We report the first preclinical data for the prevention of brain metastasis of triple-negative breast cancer. Vorinostat is brain permeable and can prevent the formation of brain metastases by 62%. Its mechanism of action involves the induction of DNA double-strand breaks, suggesting rational combinations with DNA active drugs or radiation. Experiment Overall Design: We performed gene expression profiling on metastases from vehicle- or vorinostat-treated mice to determine if alterations in gene expression were observable that were consistent with the phenotypes observed. Brain metastases from five vehicle-treated mice and six 150 mg/kg vorinostat-treated mice were procured by laser capture microdissection. RNA was extracted from the captured tumor cells from each brain and two rounds of linear amplification was done. The amplified RNA from each mouse was processed separately through microarray hybridization and analysis.
Project description:Breast cancer in young patients is known to exhibit more aggressive biological behavior and is associated with a less favorable prognosis than the same disease in older patients, owing in part to an increased incidence of brain metastases, the mechanistic explanations behind which remain poorly understood. We recently reported that young mice, compared to older mice, showed about a three-fold increase in the development of brain metastases in mouse models of triple-negative and luminal B breast cancer. Here we have performed a quantitative mass spectrometry-based proteomic analysis to identify proteins contributing to age-related disparities in the development of breast cancer brain metastases. Using a mouse model of brain-tropic (MDA-MB-231BR) triple-negative breast cancer, we harvested subpopulations of tumor metastases, the tumor-adjacent metastatic microenvironment, and uninvolved brain tissues via laser microdissection followed by quantitative proteomic analysis using high resolution mass spectrometry to characterize differentially abundant proteins contributing to age-dependent rates of brain metastasis.
Project description:Brain metastases are an increasing burden among breast cancer patients, particularly for those with HER2+ and triple negative (TN) subtypes. Mechanistic insight into the pathophysiology of brain metastases and preclinical validation of therapies has relied almost exclusively on intracardiac injection of brain-homing cells derived from highly aggressive TN MDA-MB-231 and HER2+ BT474 breast cancer cell lines. Yet, these well characterized models are far from representing the tumor heterogeneity observed clinically and, due to their fast progression in vivo, their suitability to validate therapies for established brain metastasis remains limited. The goal of this study was to develop and characterize novel human brain metastasis breast cancer patient-derived xenografts (BM-PDXs) to study the biology of brain metastasis and to serve as tools for testing novel therapeutic approaches. We obtained freshly resected brain metastases from consenting donors with breast cancer. Tissue was immediately implanted in the mammary fat pad of female immunocompromised mice and expanded as BM-PDXs. Brain metastases from 3/4 (75%) TN, 1/1 (100%) estrogen receptor positive (ER+), and 5/9 (55.5%) HER2+ clinical subtypes were established as transplantable BM-PDXs. To facilitate tracking of metastatic dissemination using BM-PDXs, we labeled PDX-dissociated cells with EGFP-luciferase followed by re-implantation in mice, and generated a BM-derived cell line (F2-7). Immunohistologic analyses demonstrated that parental and labeled BM-PDXs retained expression of critical clinical markers such as ER, progesterone receptor (PR), epidermal growth factor receptor (EGFR), HER2 and the basal cell marker cytokeratin 5 (CK5). Similarly, RNA sequencing analysis showed clustering of parental, labeled BM-PDXs and their corresponding cell line derivative. Intracardiac injection of dissociated cells from BM-E22-1, resulted in MRI-detectable macrometastases in 4/8 (50%) and micrometastases (8/8) (100%) mice, suggesting that BM-PDXs remain capable of colonizing the brain at high frequencies. Brain metastases developed 8 to 12 weeks after ic injection, located to the brain parenchyma, grew around blood vessels and elicited astroglia activation characteristic of breast cancer brain metastasis. These novel BM-PDXs represent heterogeneous and clinically relevant models to study mechanisms of brain metastatic colonization, with the added benefit of a slower progression rate that makes them suitable for preclinical testing of drugs in therapeutic settings.
Project description:Analyses of Resected Human Brain Metastases of Breast Cancer Reveal the Association between Up-Regulation of Hexokinase 2 and Poor Prognosis. Brain metastases of breast cancer seem to be increasing in incidence as systemic therapy improves. Metastatic disease in the brain is associated with high morbidity and mortality. We present the first gene expression analysis of laser-captured epithelial cells from resected human brain metastases of breast cancer compared with unlinked primary breast tumors. The tumors were matched for histology, tumor-node-metastasis (TNM) stage, and hormone receptor status. Most differentially expressed genes were down-regulated in the brain metastases, which included, surprisingly, many genes associated with metastasis. Quantitative real-time PCR analysis confirmed statistically significant differences or strong trends in the expression of six genes: BMP1, PEDF, LAMγ3, SIAH, STHMN3, and TSPD2. Hexokinase 2 (HK2) was also of interest because of its increased expression in brain metastases. HK2 is important in glucose metabolism and apoptosis. In agreement with our microarray results, HK2 levels (both mRNA and protein) were elevated in a brain metastatic derivative (231-BR) of the human breast carcinoma cell line MDA-MB-231 relative to the parental cell line (231-P) in vitro. Knockdown of HK2 expression in 231-BR cells using short hairpin RNA reduced cell proliferation when cultures were maintained in glucose-limiting conditions. Finally, HK2 expression was analyzed in a cohort of 123 resected brain metastases of breast cancer. High HK2 expression was significantly associated with poor patient survival after craniotomy (P = 0.028). The data suggest that HK2 overexpression is associated with metastasis to the brain in breast cancer and it may be a therapeutic target. Common reference design, disease state design.