Project description:The study aimed to characterize plasmids mediating carbepenem resistance in Klebsiella pneumoniae in Pretoria, South Africa. We analysed 56 K. pneumoniae isolates collected from academic hospital around Pretoria. Based on phenotypic and molecular results of these isolates, 6 representative isolates were chosen for further analysis using long reads sequencing platform. We observed multidrug resistant phenotype in all these isolates, including resistance to aminoglycosides, tetracycline, phenicol, fosfomycin, floroquinolones, and beta-lactams antibiotics. The blaOXA-48/181 and blaNDM-1/7 were manily the plasmid-mediated carbapenemases responsible for carbapenem resistance in the K. pneumoniae isolates in these academic hospitals. These carbapenemase genes were mainly associated with plasmid replicon groups IncF, IncL/M, IncA/C, and IncX3. This study showed plasmid-mediated carbapenemase spread of blaOXA and blaNDM genes mediated by conjugative plasmids in Pretoria hospitals.
Project description:The global rise of antibiotic-resistant Klebsiella pneumoniae (KP) underscores an urgent need for novel preventive strategies. Although human mesenchymal stem/stromal cells (hMSCs) exhibit immunomodulatory and antimicrobial properties in preclinical model, their clinical efficacy remains limited. We hypothesized that early prophylactic hUC-MSCs administration in high-risk populations could prime the pulmonary immune microenvironment, conferring protection against KP infection. This study evaluated the efficacy and mechanisms of hUC-MSC-based prophylaxis in a murine KP lung infection model.
2025-06-03 | GSE298453 | GEO
Project description:Whole Genom Sequences of Carbapenemase producing Organisms
Project description:HUC model includes three cell lines: HUC-BC, HUC-PC, and MCT11. They were all originally derived from human uroepithelium. However, three cell lines have different malignant potential. We here performed micro array to examine the differences in gene expression among three cell lines.
Project description:Myocardial infarction, characterized by insufficient blood supply to the heart, leads to ischemia and hypoxia of myocardial tissues, causing injury and decreased cardiac function. Despite improvements in pharmaceutical and interventional therapies, it remains a leading cause of death worldwide. Human umbilical cord mesenchymal stem cells (hUC-MSCs) play an important role in the repair of infarcted myocardium by promoting angiogenesis, reducing inflammation, secreting growth factors and cytokines. However, the harsh hypoxic microenvironment of infarcted myocardial tissue poses a threat to the survival and function of transplanted hUC-MSCs. In this study, we modified the candidate gene promoter of hUC-MSCs under hypoxic conditions and created a promoter that can respond quickly under hypoxic conditions. We found that the modified promoter significantly promoted the transcription efficiency as hypoxia time increased. This indicates that the engineered hypoxia-response promoter can effectively drive gene expression in a hypoxic environment. Furthermore, the transcription efficiency of the modified promoter under normoxic conditions is lower than that of common promoters in eukaryotic organisms, suggesting that this effect can improve the efficacy and safety of hUC-MSC-based myocardial infarction treatment by ensuring that cells function effectively in the damaged hypoxic area.
Project description:Peripheral infusion of human umbilical cord mesenchymal stem cells (hUC-MSCs) can profoundly suppress the activation of c-Mos and remarkably improve hepatic histology, suppress the systemic inflammatory reaction, and promote animal survival in a large non-human primate model of acute liver failure (ALF). The mechanism through which hUC-MSCs inhibits c-Mos activation in vivo remains unclear. We hypothesized that hUC-MSCs can adaptively produce certain inhibitory cytokines in response to the pro-inflammatory microenvironment. To confirm this, we stimulated cultured hUC-MSCs with inflammatory monkey serum (serum isolated at day 1 following toxin challenge). After a 30-min stimulation, the cells were collected for microarray gene expression analysis. A whole human genome oligo microarray analysis was performed to reveal the altered gene expression profiles of the hUC-MSCs