Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3)
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Functional gene abundance was determined using GeoChip.
Project description:The increased urban pressures are often associated with specialization of microbial communities. Microbial communities being a critical player in the geochemical processes, makes it important to identify key environmental parameters that influence the community structure and its function.In this proect we study the influence of land use type and environmental parameters on the structure and function of microbial communities. The present study was conducted in an urban catchment, where the metal and pollutants levels are under allowable limits. The overall goal of this study is to understand the role of engineered physicochemical environment on the structure and function of microbial communities in urban storm-water canals. Microbial community structure was determined using PhyoChio (G3) Water and sediment samples were collected after a rain event from Sungei Ulu Pandan watershed of >25km2, which has two major land use types: Residential and industrial. Samples were analyzed for physicochemical variables and microbial community structure and composition. Microbial community structure was determined using PhyoChio (G3)
Project description:Epigenetic variation has the potential to control environmentally dependent development and contribute to phenotypic responses to local environments. Environmental epigenetic studies of sexual organisms confirm the responsiveness of epigenetic variation, which should be even more important when genetic variation is lacking. A previous study of an asexual snail, Potamopyrgus antipodarum, demonstrated that different populations derived from a single clonal lineage differed in both shell phenotype and methylation signature when comparing lake versus river populations. Here, we examine methylation variation among lakes that differ in environmental disturbance and pollution histories. The differential DNA methylation regions (DMRs) identified among the different lake comparisons suggested a higher number of DMRs and variation between rural Lake 1 and one urban Lake 2 and between the two urban Lakes 2 and 3, but limited variation between the rural Lake 1 and urban Lake 3. DMR genomic characteristics and gene associations were investigated. Observations suggest there is no effect of geographic distance or any consistent pattern of DMRs between urban and rural lakes. Environmental factors may influence epigenetic response.
Project description:Here we report 16s rRNA data from environmental samples that include metal working fluid and air from a machine facility and lung tissue samples. Microbiota composition of environmental and lung tissue samples showed greater similarity between case samples than between control samples.
Project description:Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. In particular, trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. Copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis along with shifts in its microbiota. Unexpectedly, very few genes were differentially expressed in copper-treated copepods compared to controls, with most of the reported differences involving genes upregulated in males compared to females. In contrast, copper increased the taxonomic diversity indices of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in copper-treated copepods concurred with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, and Alkanindiges) and a higher relative abundance of the copA gene encoding a periplasmic inducible multi-copper oxidase. Overall, these results revealed very contrasting responses of E. affinis and its microbiota to copper exposure. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines here the need to follow the microbial component during the evaluation of the vulnerability of the zooplankton to the metallic stress.
Project description:Purpose: Helminth infection and dietary intake can affect the intestinal microbiota, as well as the immune system. Methods: Here we analyzed the relationship between fecal microbiota and blood profiles of indigenous Malaysians, referred to locally as Orang Asli, in comparison to urban participants from the capital city of Malaysia, Kuala Lumpur. Results: We found that helminth infections had a larger effect on gut microbial composition than did dietary intake or blood profiles. Trichuris trichiura infection intensity also had the strongest association with blood transcriptional profiles. By characterizing paired longitudinal samples collected before and after deworming treatment, we determined that changes in serum zinc and iron levels among the Orang Asli were driven by changes in helminth infection status, independent of dietary metal intake. Serum zinc and iron levels were associated with changes in the abundance of several microbial taxa. Conclusions: There is considerable interplay between helminths, micronutrients and the microbiota on the regulation of immune responses in humans.
2019-10-01 | GSE137338 | GEO
Project description:70 Hainan local pigeons resequencing