Project description:Whole genome sequencing to identify spontaneous nucleotide substitutions / deletions that allowed suppression of motility defect phenotype in ∆motV or ∆motW of Vibrio cholerae
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain. Total RNA recovered from wild-type cultures of VIbrio cholerae O395N1 and its nqrA-F mutant strain. Each chip measures the expression level of 3,835 genes from Vibrio cholerae O1 biovar eltor str. N16961 with twenty average probes/gene, with five-fold technical redundancy.
Project description:Investigation of whole genome gene expression level changes in a Vibrio cholerae O395N1 delta-nqrA-F mutant, compared to the wild-type strain.
Project description:We report the genome-wide analysis from chromatin immunoprecipitated DNA (ChIP-sequencing) at very high resolution of the DNA binding pattern of ParBVc1 on the chromosome of Vibrio cholerae.
Project description:Temperature is a crucial environmental signal that govers the occurrence of Vibrio cholerae and cholera outbreaks. To understand how temperature impacts the transcriptome of V. cholerae we performed whole-genome level transcriptional profiling using custom microarrays on cells grown at human body temperature (37 C) then shifted to temperatures V. cholerae experience in the environment (15 C and 25 C).
Project description:We used RNA-seq to determine transcriptional profiles of whole guts or IPCs isolated from guts infected with wild type or type VI secretion system deficient Vibrio cholerae. We found significant differences between guts and progenitor cells infected wild type or type VI secretion system deficient Vibrio cholerae.
Project description:To determine transcriptome differences in Vibrio cholerae when grown as planktonic and biofilm cultures, whole-genome level transcriptional profiling was performed using RNAseq analysis. Transcriptomes of biofim and planktonic cultures were compared in this study.
Project description:DNA methylation is a key epigenetic regulator in all domains of life, yet the effects of most bacterial DNA methyltransferases on cellular processes are largely undefined. Here, we used diverse techniques, including bisulfite sequencing, transcriptomics, and transposon insertion site sequencing to extensively characterize a 5-methylcytosine (5mC) methyltransferase, VchM, in the cholera pathogen, Vibrio cholerae. We have comprehensively defined VchM's DNA targets, its genetic interactions and the gene networks that it regulates. Although VchM is a relatively new component of the V. cholerae genome, it is required for optimal V. cholerae growth in vitro and during infection. Unexpectedly, the usually essential ÏE cell envelope stress pathway is dispensable in ÎvchM V. cholerae, likely due to its lower activation in this mutant and the capacity for VchM methylation to limit expression of some cell envelope modifying genes. Our work illuminates how an acquired DNA methyltransferase can become integrated within complex cell circuits to control critical housekeeping processes. Duplicates samples were analyzed for wildtype cells grown under 3 conditions: exponential phase, stationary phase and rabbit intestinal infection