Project description:To dissect differences in gene expression profile of soybean roots and root nodules, we have employed microarray analysis. Seeds of soybean (Glycine max L. cv. Nourin No. 2) were inoculated with rhizobia (Bradyrhizobium diazoefficiens USDA110) and were hydroponically cultivated under controlled conditions with nitrogen free culture solution (Saito et al. 2014). At 19 days after planting, each plant were treated with or without 5 mM nitrate for 24 hours. Roots and nodules from three plants were pooled with three biological replications, and total RNA was extracted.
Project description:To dissect differences in gene expression profile of soybean roots inoculated with wild-type and type III secretion mutant rhizobia, we have employed microarray analysis. Seeds of soybeans (Glycine max L. cv. Enrei and its non-nodulating line En1282) were surface-sterilized and germinated at 25 M-BM-0C for 2 days and were transferred to a plant box (CUL-JAR300; Iwaki, Tokyo, Japan) containing sterile vermiculite watered with B&D nitrogen-free medium (Broughton and Dilworth 1971). One day after transplant, each seedling was inoculated with Bradyrhizobium elkanii USDA61, its type III secretion mutant BerhcJ or sterilized water (mock treatment). Plants were cultivated in a growth chamber at 25M-BM-0C and 70% humidity with a daytime of 16 h followed by a nighttime of 8 h. To determine the gene expression, RNA was extracted from the roots 8 days after inoculation. Gene expression in soybean roots inoculated with Bradyrhizobium elkanii USDA61, its type III secretion mutant BerhcJ or sterilized water (mock treatment) was measured 8 days after inoculation. Three independent experiments were performed at each inoculation.
Project description:To dissect differences in gene expression profile of soybean roots inoculated with wild-type and type III secretion mutant rhizobia, we have employed microarray analysis. Seeds of soybean (Glycine max L. cv. BARC-2 (Rj4/Rj4)) were surface-sterilized and germinated at 25 °C for 2 days and were transferred to the seed pack (Seed Pack; Daiki rika Kogyo Co., Ltd., Shiga, Japan) watered with B&D nitrogen-free medium (Broughton and Dilworth 1971). One day after transplant, each seedling was inoculated with Bradyrhizobium elkanii USDA61 or its type III secretion mutant BErhcJ. Plants were cultivated in a growth chamber at 25°C and 70% humidity with a daytime of 16 h followed by a nighttime of 8 h. To determine the gene expression, RNA was extracted from the roots 2 and 4 days after inoculation. Gene expression in soybean roots inoculated with Bradyrhizobium elkanii USDA61, its type III secretion mutant BErhcJ was measured 2 and 4 days after inoculation. Three independent experiments were performed at each inoculation.
Project description:To dissect differences in gene expression profile of soybean roots inoculated with wild-type and type III secretion mutant rhizobia, we have employed microarray analysis. Seeds of soybean (Glycine max L. cv. BARC-2 (Rj4/Rj4)) were surface-sterilized and germinated at 25 °C for 2 days and were transferred to the seed pack (Seed Pack; Daiki rika Kogyo Co., Ltd., Shiga, Japan) watered with B&D nitrogen-free medium (Broughton and Dilworth 1971). One day after transplant, each seedling was inoculated with Bradyrhizobium elkanii USDA61 or its type III secretion mutant BErhcJ. Plants were cultivated in a growth chamber at 25°C and 70% humidity with a daytime of 16 h followed by a nighttime of 8 h. To determine the gene expression, RNA was extracted from the roots 2 and 4 days after inoculation.
Project description:To dissect differences in gene expression profile of soybean roots inoculated with wild-type and type III secretion mutant rhizobia, we have employed microarray analysis. Seeds of soybeans (Glycine max L. cv. Enrei and its non-nodulating line En1282) were surface-sterilized and germinated at 25 °C for 2 days and were transferred to a plant box (CUL-JAR300; Iwaki, Tokyo, Japan) containing sterile vermiculite watered with B&D nitrogen-free medium (Broughton and Dilworth 1971). One day after transplant, each seedling was inoculated with Bradyrhizobium elkanii USDA61, its type III secretion mutant BerhcJ or sterilized water (mock treatment). Plants were cultivated in a growth chamber at 25°C and 70% humidity with a daytime of 16 h followed by a nighttime of 8 h. To determine the gene expression, RNA was extracted from the roots 8 days after inoculation.
Project description:Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. 8798 soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Project description:Soybean is an important economic crop for human diet, animal feeds and biodiesel due to high protein and oil content. Its productivity is significantly hampered by salt stress, which impairs plant growth and development by affecting gene expression, in part, through epigenetic modification of chromatin status. However, little is known about epigenetic regulation of stress response in soybean roots. Here, we used RNA-seq and ChIP-seq technologies to study the dynamics of genome-wide transcription and histone methylation patterns in soybean roots under salt stress. 8798 soybean genes changed their expression under salt stress treatment. Whole-genome ChIP-seq study of an epigenetic repressive mark, histone H3 lysine 27 trimethylation (H3K27me3), revealed the changes in H3K27me3 deposition during the response to salt stress. Unexpectedly, we found that most of the inactivation of genes under salt stress is strongly correlated with the de novo establishment of H3K27me3 in various parts of the promoter or coding regions where there is no H3K27me3 in control plants. In addition, the soybean histone modifiers were identified which may contribute to de novo histone methylation and gene silencing under salt stress. Thus, dynamic chromatin regulation, switch between active and inactive modes, occur at target loci in order to respond to salt stress in soybean. Our analysis demonstrates histone methylation modifications are correlated with the activation or inactivation of salt-inducible genes in soybean roots.
Project description:We previously found that rhizobia-inoculation enhanced the soybean's salt tolerance; the transcription factor (TF) GmMYB173 and its downstream gene GmCHS5 dictate soybean’s flavonoid metabolism in response to this stress. For revealing the mechanism of the enhancement, quantitative phosphoproteomics and metabonomic approaches were used to identify phosphoproteins and metabolites that dominant the common pathway between salinity and rhizobia induced response in soybean roots.
Project description:In the study, two soybean genotypes were selected to conduct high and low P, high and low Mg, and AM fungal inoculation treatments, combined with RNA-seq sequencing technique in order to investigate the physiological and molecular mechanisms of the symbiosis between soybean and AM fungi affected by P and Mg treatments. The results showed that both Mg application and AM fungal inoculation were beneficial to promote soybean growth under low P condition. And there was a synergistic effect between the Mg concentration and the P concentration in the root of HN112 under the inoculation condition. RNA-seq sequencing was carried out using the roots of P-efficient soybean HN89 under different Mg and inoculation treatments with low P condition, and the difference of gene expression profiles was analyzed between high and low Mg treatments, and different inoculation treatments. According to the analysis of GO function classification and KEGG enrichment, under high Mg condition, the metabolic pathway was mainly enriched in lipid metabolism and glucose metabolism pathway under the inoculation treatment compared with the non-inoculation treatment, which regulated carbon metabolism pathway. Under the low Mg condition, the metabolic pathway was mainly enriched in the photosynthesis- antenna protein pathway to regulate the photosynthesis pathway under the inoculation treatment compared with the non-inoculation treatment. At the same time, the inoculation treatment significantly increased soybean root starch concentration under low Mg condition, compared with the non-inoculation treatment, suggesting that the significant up-regulation of a large number of photosynthesis related genes might be related to the significant increase of starch concentration at this treatment.
Project description:Brassinosteroids (BRs) are a series of sterol hormones in plants, which play important physiological roles in many aspects of plant growth and development processes. Exogenous application of BR and its inhibitors PPZ to investigated the roles of BR in soybean root growth and development. Transcriptome sequencing analysis was performed to identified lots number of differential expression genes(DEGs) by eBL (2,4-epicastasterone, 24-epiCS) and PPZ (propiconazole) treatment of soybean root tips(1 cm).