Project description:This SuperSeries is composed of the following subset Series: GSE13858: Global survey of miRNA microarray of uterus, ovariectomized female mice with or without estrogen (E2) treatment GSE13859: Global survey of miRNA microarray of whole embryo, wild type vs estrogen receptor alpha knockout mice Refer to individual Series
Project description:Examination of crosstalk between Aryl hydrocarbonreceptor (AHR) and Estrogen receptor (ER) in tha rat uterus on the level of miRNA transcriptome The study was designed to see the overall ncRNA-expression change in the uterus induced by E2
Project description:The ovarian hormones estrogen and progesterone orchestrate the transcriptional programs required to direct functions of the uterus for initiation and maintenance of pregnancy. Estrogen, acting via estrogen receptor alpha (ERα), regulates gene expression by activating and repressing distinct genes involved in signaling pathways that regulate cellular and physiological responses including cell division, water influx, and immune cell recruitment. Historically, these transcriptional responses have been postulated to reflect a biphasic physiological response. In this study, we explored the transcriptional responses of the ovariectomized mouse uterus to 17β-estradiol (E2) by RNA-seq to obtain global expression profiles of protein coding transcripts (mRNAs) and long noncoding RNAs (lncRNAs) following 0.5, 1, 2 and 6 hours of treatment. The E2-regulated mRNA and lncRNA expression profiles in the mouse uterus indicate an association between lncRNAs and mRNAs that regulate E2-driven pathways and reproductive phenotypes in the mouse. The transient E2-regulated transcriptome is reflected in the time-dependent shifting of biological processes regulated in the uterus in response to E2. Moreover, high expression of some conserved lncRNAs that are E2-regulated in the mouse uterus are predictive of low overall survival in endometrial carcinoma patients (e.g., H19, KCNQ1OT1, MIR17HG, and FTX). Collectively, this study (1) describes a genomic approach for identifying E2-regulated lncRNAs that may serve critical function in the uterus and (2) provides new insights into our understanding of the regulation of hormone-regulated transcriptional responses with implications in pregnancy and endometrial pathologies.
Project description:We have previously demonstrated that endoxifen is the most important tamoxifen metabolite responsible for eliciting the anti-estrogenic effects of this drug in breast cancer cells expressing estrogen receptor-alpha. However, the relevance of estrogen receptor-beta in mediating endoxifen action has yet to be explored. Therefore, the goals of this study were to determine the differences in the global gene expression profiles elicited by estradiol treatment and endoxifen between parental MCF7 breast cancer cells (expressing estrogen receptor alpha only) and MCF7 cells stably expressing estrogen receptor beta.
Project description:To examine the effect of estrogen receptor alpha for the miRNA expression, total RNA extracted from whole embryos at E18.5 of wild type and Estrogen Receptor alpha knock-out mice
Project description:To examine the effect of estrogen receptor alpha for the miRNA expression, total RNA extracted from whole embryos at E18.5 of wild type and Estrogen Receptor alpha knock-out mice
Project description:To examine the effect of estrogen receptor alpha for the miRNA expression, total RNA extracted from whole embryos at E18.5 of wild type and Estrogen Receptor alpha knock-out mice Two group experiment (wild type and ER alpha KO)