Project description:Anaerobic digestion (AD) is a core technology in management of urban organic wastes, converting a fraction of the organic carbon to methane and the residual digestate, the biorest, have a great potential to become a major organic fertilizer for agricultural soils in the future. At the same time, mitigation of N2O-emissions from the agricultural soils is needed to reduce the climate forcing by food production. Our goal was therefore to enrich for N2O reducing bacteria in AD digestates prior to fertilization, and in this way provide an avenue for large-scale and low-cost cultivation of strongly N2O reducing bacteria which can be directly introduced to agricultural soils in large enough volumes to alter the fate of nitrogen in the soils. Gas kinetics and meta-omics (metagenomics and metaproteomics) analyses of the N2O enriched digestates identified populations of N2O respiring organisms that grew by harvesting fermentation intermediates of the methanogenic consortium.
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw.
Project description:Alkaline soils such as those found in some Mediterranean areas typically have a low phosphorus (P) and zinc (Zn) phytoavailability that detracts from plant growth and yield. We examined the effects of P and Zn fertilization individually and in combination on growth, yield and grain protein content in maize grown in pots filled with three Mediterranean soils. P and Zn translocation was impaired, and yield reduced by 8–85%, in plants treated with Zn or P alone. In contrast, joint fertilization with P and Zn enhanced translocation to grain and nutrient use efficiency, thereby increasing plant growth, yield (31–121%) and grain Zn availability. Fertilization with P or Zn also influenced the abundance of specific proteins affecting grain quality (viz., storage, lys-rich and cell wall proteins), which were more abundant in mature grains from plants fertilized with Zn alone and, to a lesser extent, P + Zn.
Project description:Masson pine (Pinus massoniana) has evolved some adaptations for growth in low P soils. To elucidate these mechanisms, we investigated global gene expression profiles of the masson pine responding to long-term phosphorus starvation and different Pi levels (P1, 0.01 mM P; P2, 0.06 mM P).
Project description:The fate of the carbon stocked in permafrost soils following global warming and permafrost thaw is of major concern in view of the potential for increased CH4 and CO2 emissions from these soils. Complex carbon compound degradation and greenhouse gas emissions are due to soil microbial communities, but their composition and functional potential in permafrost soils are largely unknown. Here, a 2 m deep permafrost and its overlying active layer soil were subjected to metagenome sequencing, quantitative PCR, and microarray analyses. The active layer soil and 2 m permafrost soil microbial community structures were very similar, with Actinobacteria being the dominant phylum. The two soils also possessed a highly similar spectrum of functional genes, especially when compared to other already published metagenomes. Key genes related to methane generation, methane oxidation and organic matter degradation were highly diverse for both soils in the metagenomic libraries and some (e.g. pmoA) showed relatively high abundance in qPCR assays. Genes related to nitrogen fixation and ammonia oxidation, which could have important roles following climatic change in these nitrogen-limited environments, showed low diversity but high abundance. The 2 m permafrost soil showed lower abundance and diversity for all the assessed genes and taxa. Experimental biases were also evaluated and showed that the whole community genome amplification technique used caused large representational biases in the metagenomic libraries. This study described for the first time the detailed functional potential of permafrost-affected soils and detected several genes and microorganisms that could have crucial importance following permafrost thaw. A 2m deep permafrost sample and it overlying active layer were sampled and their metagenome analysed. For microarray analyses, 8 other soil samples from the same region were used for comparison purposes.
Project description:Masson pine (Pinus massoniana) has evolved some adaptations for growth in low P soils. To elucidate these mechanisms, we investigated global gene expression profiles of the masson pine responding to long-term phosphorus starvation and different Pi levels (P1, 0.01 mM P; P2, 0.06 mM P). Analysis used phosphorus-sufficient treatment RNA as control samples for comparison to the experimental samples (P1 and P2) taken at 12, 24, 48 and 60 day. Indirect comparisons were made across multiple arrays with raw data pulled from different channels for data analysis and comparison to the control data.