Project description:Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as ‘patterning’ the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation. 20 samples - Amplified material from each embryo (stage 2, stage3, stage4, stage5+) was indirectly labelled using "random" hexamers. One independent target per embryo was generated and hybridised onto one array. 5 measurements per embryonic stage were generated.
Project description:Axis specification in mouse is determined by a sequence of reciprocal interactions between embryonic and extra-embryonic tissues so that a few extra-embryonic genes appear as ‘patterning’ the embryo. Considering these interactions as essential, but lacking in most mammals the genetically driven approaches used in mouse and the corresponding patterning mutants, we examined whether a molecular signature originating from extra-embryonic tissues could relate to the developmental stage of the embryo proper and predict it. To this end, we have profiled bovine extra-embryonic tissues at peri-implantation stages, when gastrulation and early neurulation occur, and analysed the subsequent expression profiles through the use of predictive methods as previously reported for tumour classification. A set of six genes (CALM1, CPA3, CITED1, DLD, HNRNPDL, and TGFB3), half of which had not been previously associated with any extra-embryonic feature, appeared significantly discriminative and mainly dependent on embryonic tissues for its faithful expression. The predictive value of this set of genes for gastrulation and early neurulation stages, as assessed on naive samples, was remarkably high (93%). In silico connected to the bovine orthologues of the mouse patterning genes, this gene set is proposed as a new trait for embryo staging. As such, this will allow saving the bovine embryo proper for molecular or cellular studies. To us, it offers as well new perspectives for developmental phenotyping and modelling of embryonic/extra-embryonic co-differentiation.
Project description:Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extraembryonic patterns, as evidenced by morphological and molecular M-bM-^@M-^XM-bM-^@M-^XuncouplingM-bM-^@M-^YM-bM-^@M-^Y. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters redifferentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way. Amplified material from each extra-embryonic tissue was indirectly labelled using "random" hexamers. One independent target per tissue was generated and hybridised onto one array. 10 measurements per reproduction mode were generated.
Project description:The Toll-like receptor (TLR) and peptidoglycan recognition protein 1 (PGLYRP1) genes play key roles in the innate immune systems of mammals. While the TLRs recognize a variety of invading pathogens and induce innate immune responses, PGLYRP1 is directly microbicidal. We used custom allele-specific assays to genotype and validate 220 diallelic variants, including 54 nonsynonymous SNPs in 11 bovine innate immune genes (TLR1-TLR10, PGLYRP1) for 37 cattle breeds. Bayesian haplotype reconstructions and median joining networks revealed haplotype sharing between Bos taurus taurus and Bos taurus indicus breeds at every locus, and we were unable to differentiate between the specialized B. t. taurus beef and dairy breeds, despite an average polymorphism density of one locus per 219 bp. Ninety-nine tagSNPs and one tag insertion-deletion polymorphism were sufficient to predict 100% of the variation at all 11 innate immune loci in both subspecies and their hybrids, whereas 58 tagSNPs captured 100% of the variation at 172 loci in B. t. taurus. PolyPhen and SIFT analyses of nonsynonymous SNPs encoding amino acid replacements indicated that the majority of these substitutions were benign, but up to 31% were expected to potentially impact protein function. Several diversity-based tests provided support for strong purifying selection acting on TLR10 in B. t. taurus cattle. These results will broadly impact efforts related to bovine translational genomics.
Project description:BackgroundWe present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque.ResultsThe assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly.ConclusionThe biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.
Project description:Somatic cell nuclear transfer (SCNT) is the most efficient cell reprogramming technique available, especially when working with bovine species. Although SCNT blastocysts performed equally well or better than controls in the weeks following embryo transfer at Day 7, elongation and gastrulation defects were observed prior to implantation. To understand the developmental implications of embryonic/extra-embryonic interactions, the morphological and molecular features of elongating and gastrulating tissues were analysed. At Day 18, 30 SCNT conceptuses were compared to 20 controls (AI and IVP: 10 conceptuses each); one-half of the SCNT conceptuses appeared normal while the other half showed signs of atypical elongation and gastrulation. SCNT was also associated with a high incidence of discordance in embryonic and extraembryonic patterns, as evidenced by morphological and molecular ‘‘uncoupling’’. Elongation appeared to be secondarily affected; only 3 of 30 conceptuses had abnormally elongated shapes and there were very few differences in gene expression when they were compared to the controls. However, some of these differences could be linked to defects in microvilli formation or extracellular matrix composition and could thus impact extra-embryonic functions. In contrast to elongation, gastrulation stages included embryonic defects that likely affected the hypoblast, the epiblast, or the early stages of their differentiation. When taking into account SCNT conceptus somatic origin, i.e. the reprogramming efficiency of each bovine ear fibroblast (Low: 0029, Med: 7711, High: 5538), we found that embryonic abnormalities or severe embryonic/extra-embryonic uncoupling were more tightly correlated to embryo loss at implantation than were elongation defects. Alternatively, extra-embryonic differences between SCNT and control conceptuses at Day 18 were related to molecular plasticity (high efficiency/high plasticity) and subsequent pregnancy loss. Finally, because it alters redifferentiation processes in vivo, SCNT reprogramming highlights temporally and spatially restricted interactions among cells and tissues in a unique way.