Project description:Commercial Atlantic halibut (Hippoglossus hippoglossus) farming is restricted by variable oocyte quality, slow growth, and early maturation of male fish. Maternally transferred components regulate early developmental processes; therefore, they have an effect on the future development of an embryo. We profiled components of the transcriptome involved in immune defence as well as germline and muscle development during early developmental stages: 8-cell embryos, germ ring stage, 10-somite stage, and hatched embryos using a 10k oligonucleotide array and quantitative real-time PCR to specifically identify transcripts useful as molecular markers of embryo quality.
Project description:Profiling of the embryonic Atlantic halibut (Hippoglossus hippoglossus L.) transcriptome reveals maternal transcripts as potential markers of embryo quality
Project description:A genetic linkage map has been constructed for Atlantic halibut on the basis of 258 microsatellites and 346 AFLPs. Twenty-four linkage groups were identified, consistent with the 24 chromosomes seen in chromosome spreads. The total map distance is 1562.2 cM in the female and 1459.6 cM in the male with an average resolution of 4.3 and 3.5 cM, respectively. Using diploid gynogens, we estimated centromere locations in 19 of 24 linkage groups. Overall recombination in the female was approximately twice that of the male; however, this trend was not consistent along the linkage groups. In the centromeric regions, females had 11-17.5 times the recombination of the males, whereas this trend reversed toward the distal end with males having three times the recombination of the females. Correspondingly, in the male, markers clustered toward the centromeric region with 50% of markers within 20 cM of the putative centromere, whereas 35% of markers in the female were found between 60 and 80 cM from the putative centromere. Limited interspecies comparisons within Japanese flounder and Tetraodon nigroviridis revealed blocks of conservation in sequence and marker order, although regions of chromosomal rearrangement were also apparent.