Project description:Transcription factor binding locations by ChIP followed by high throughput sequencing. To build and validate an automated Chromatin Immunoprecipitation and high throughput Illumina sequencing pipeline
Project description:Microbiome sequencing model is a Named Entity Recognition (NER) model that identifies and annotates microbiome nucleic acid sequencing method or platform in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with sequencing metadata from literature. For more information, please refer to the following blogs: http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications
Project description:We report the application of sequencing technology for high-throughput profiling of RUNX1 transcription factor occupancy in mouse EML cells. RUNX1 antibody was use for chromatin immunoprecipitation followed by high-throughput sequencing to reveal RUNX1 genome occupancy in hematopoietic stem/progenitor cells. Examination of RUNX1 transcription factor occupancy in EML cells.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of DNA methylations in Burkholderia pseudomallei. SMRTbell™ sequencing
Project description:We have used ChIP followed by high throughput sequencing to profile the genome-wide recruitment of wildtype Groucho (Gro) at high resolution in BG3 Drosophila cells.
Project description:Bisulphite sequencing enables DNA methylation analysis of every cytosine residue. We have optimized conditions for combining chromatin immunoprecipation (ChIP) with high throughput bisulphite sequencing to study the relationship between histone modifications and DNA methylation. Paired-end bisulphite sequencing of H3K27me3-ChIP DNA for LNCaP and PrEC cell lines
Project description:Purpose: High-throughput RNA sequencing has accelerated discovery of the complex regulatory roles of small RNAs, such those derived from tRNAs. Also recent advances in high-throughput RNA sequencing has revealed the complex RNA modification landscape and the complex role these nucleosides modifactions have in cell signalling, stem cell biology, development and cancer. The goal of this study is to establish how m5C-tRNA methylation and tRNA-derived small RNAs can affect stem cell fucntion in cancer. Methods: four replicates of tRNAs and RNA buisulphite sequencing of wild-type (WT) and NSun2 -/- mouse skin squamous tumours were generated by deep sequencing, using Illumina HiSeq platform. Results: Our analyses reveal that inhibition of post-transcriptional cytosine-5 methylation locks stem cells in this distinct translational inhibition programme that results in tumour progression but that also sentizes cancer cells to genotoxic stress. Transfer RNA (tRNA) sequencing and RNA Bisulphite sequencing of wild-type (WT) and NSun2 -/- mouse skin squamous tumours