Project description:Analysis of microbial gene expression in response to physical and chemical gradients forming in the Columbia River, estuary, plume and coastal ocean was done in the context of the environmental data base. Gene expression was analyzed for 2,234 individual genes that were selected from fully sequenced genomes of 246 prokaryotic species (bacteria and archaea) as related to the nitrogen metabolism and carbon fixation. Seasonal molecular portraits of differential gene expression in prokaryotic communities during river-to-ocean transition were created using freshwater baseline samples (268, 270, 347, 002, 006, 207, 212). Total RNA was isolated from 64 filtered environmental water samples collected in the Columbia River coastal margin during 4 research cruises (14 from August, 2007; 17 from November, 2007; 18 from April, 2008; and 16 from June, 2008), and analyzed using microarray hybridization with the CombiMatrix 4X2K format. Microarray targets were prepared by reverse transcription of total RNA into fluorescently labeled cDNA. All samples were hybridized in duplicate, except samples 212 and 310 (hybridized in triplicate) and samples 336, 339, 50, 152, 157, and 199 (hybridized once). Sample location codes: number shows distance from the coast in km; CR, Columbia River transect in the plume and coastal ocean; NH, Newport Hydroline transect in the coastal ocean at Newport, Oregon; AST and HAM, Columbia River estuary locations near Astoria (river mile 7-9) and Hammond (river mile 5), respectively; TID, Columbia River estuary locations in the tidal basin (river mile 22-23); BA, river location at Beaver Army Dock (river mile 53) near Quincy, Oregon; UP, river location at mile 74.
Project description:MicroRNAs (miRNAs) function as regulators in a broad range of phenotypes. The Oriental River Prawn (Macrobrachium nipponense) is an important commercial species that is widely distributed in freshwater and low-salinity estuarine regions of China and other Asian countries. To date, there are no reports describing M. nipponense miRNAs.
Project description:MicroRNAs (miRNAs) function as regulators in a broad range of phenotypes. The Oriental River Prawn (Macrobrachium nipponense) is an important commercial species that is widely distributed in freshwater and low-salinity estuarine regions of China and other Asian countries. To date, there are no reports describing M. nipponense miRNAs.
2016-06-01 | GSE72416 | GEO
Project description:Viral metagenomic sequencing of Western USA freshwater mussels
Project description:In order to identify gene expression difference between marine and freshwater stickleback populations, we compared the transcriptomes of seven adult tissues (eye, gill, heart, hypothalumus, liver, pectoral muscle, telencephalon) between a marine population sampled from the mouth of the Little Campbell river in British Columbia (LITC) and a freshwater population (Fishtrap Creek, FTC) from northern Washington. For each population, the sampled individuals were the lab-reared progeny of a single pair of wild-caught parents.
2011-12-30 | GSE34783 | GEO
Project description:The gut microbiome of freshwater mussels (Lampsilis ornata and Lampsilis ovata) after placement into the Tennessee and Mobile River Basins
Project description:To explore the mechanisms of Salmonella desiccation resistance, we studied the transcriptomic responses in Salmonella Tennessee (Tennessee), using S. Typhimurium LT2 (LT2), a strain weakly resistant to desiccation, as a reference strain. In response to 2 h air-drying at 11% equilibrated relative humidity, approximately one-fourth of the ORFs in the Tennessee genome and one-fifth in LT2 were differentially expressed (> 2-fold). Among all differentially expressed functional groups (>5-fold) in both strains, the expression fold change associated with fatty acid metabolism was the highest, and constituted 51 and 35% of the total expression fold change in Tennessee and LT2, respectively. Tennessee showed greater changes in expression of genes associated with stress response and envelope modification than LT2, while showing lesser changes in protein biosynthesis expression. Expression of flagella genes was significantly more inhibited in stationary phase cells of Tennessee than LT2 both before and after desiccation.