Project description:Vibrio harveyi is a major bacterial pathogen that can cause fatal vibriosis in Chinese tongue sole (Cynoglossus semilaevis). To comprehend the molecular mechanisms of C. semilaevis host response against V. harveyi infection, we performed transcriptome (RNA-seq) analysis of C. semilaevis from resistant family and susceptible family.
Project description:Objectives: determination of transcription start sites in Vibrio harveyi genome and discovery of new transcripts Methods: we performed differential seqencing of total RNA isolated from o.n. control Vibrio harveyi cultures. Sample treatment with Terminator EXonuclease (TEX) allowed differenciation of primary and secondary transcripts, helping in the definition of transcription start sites (TSS) Results: by data-mining RNA-seq data and performing some Northern Blot experiments we were able to detect new putative small-RNAs, along with these results, a more deep analisys of our RNA-seq data will give futher insight into genetic organization of Vibrio harveyi genome to help in its investigation
Project description:Grouper is an important commercial maricultural fish, which suffer viral nervous necrosis (VNN) disease at the larval and juvenile stages, but the changes of transcriptomics and proteomics during viral infection remain unknown. In this study, we applied RNA-seq and label-free mass spectrum for the first time to depict the map of transcriptomics and proteomics in non-infected, susceptible-infected and tolerate-infected grouper in larval stage. Further analyses showed that the transcriptome and proteome change dramatically among 3 distinct groups, indicating that different immune response for infected and perststent grouper in larval stage. These valuable transcriptomics and proteomics datasets enable the investigation of molecular mechanism in nervous necrosis (VNN) virus infection, thus helps the further development of molecular breeding and marine fishery