Project description:The purpose of this study was to characterize global gene expression in human airway epithelial cells and identify cellular pathways associated with coarse, fine and ultrafine particulate matter (PM) exposures. Ambient PM was collected in 3 different size fractions from Chapel Hill air, particles were extracted from foam or filter matrices and lyophilized. Human primary airway epithelial cells were exposed to particles at 250μg/ml or vehicle control for 6h in culture. Following exposure, RNA was isolated and hybridized to human HG U133A affymetrix chips. Experiment Overall Design: Human primary epithelial cells were exposed to coarse, fine, ultrafine PM or vehicle control in culture for 6h. Three biological replicates for each treatment (coarse, fine, ultrafine, control) were conducted at (250ug/ml). 12 Affymetrix chips (HG U133A) were used.
Project description:Fresh fish are highly perishable food products and their short shelf-life limits their commercial exploitation, leads to waste and has a negative impact on aquaculture sustainability. New non-thermal food processing methods, such as High pressure (HP), are being investigated to prolong shelf-life while assuring high food quality. We applied several tools to evaluate the impacts of HP processing on European sea bass (Dicentrarchus labrax) fillets quality and shelf life. The data here presented includes visual and physical measurements of flesh quality and the microbiome and proteome profiles of control and HP-processed sea bass fillets (600MPa, 25ºC, 5min), after isothermal storage (2°C) for different periods ranging from 1 to 67 days. Color (L-, a- and b- values) change and texture (hardness, cohesiveness and adhesiveness) parameters were obtained by using appropriate colorimeter and texture analyser, respectively, during refrigerated storage. Bacterial diversity was analysed by Illumina high-throughput sequencing of the 16S rRNA gene in five pooled DNAs from control or HP-processed fillets after 1, 11 or 67 days and the raw reads were deposited in the NCBI-SRA database with accession number PRJNA517618. In addition, high-throughput sequencing of the internal transcribed spacer (ITS) region targeting yeast and moulds was run for control or HP-processed fillets at the end of storage (11 or 67 days, respectively), being deposited under SRA accession PRJNA517779. Quantitative label-free proteomics profiles were analysed by SWATH-MS (Sequential Windowed data independent Acquisition of the Total High-resolution-Mass Spectra) in myofibrillar or sarcoplasmic enriched protein extracts pooled for control or HP-processed filets after short (1d) or long-term (11-67 days) storage. These data support the findings reported in “High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring” (Tsironi et al. 2019).
Project description:Microbial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme’s response (R2, 0.51–0.80, p < 0.01 in all cases). Activity and stability profiles of 228 esterases and 5 extradiol dioxygenases from sediment and seawater across 70 locations worldwide (latitude 62.2°S–16°N, MAT –1.4ºC–29.5ºC) validate this thermal pattern. Modelling the esterase phase transition temperature as a measure of structural flexibility, confirm the observed relationship with MAT. Furthermore, when considering temperature variability in sites with non-significantly different MATs, the broadest range of enzyme thermal behaviour and the highest growth plasticity of the enriched heterotrophic bacteria occur in samples with the widest annual thermal variability. These results indicate that temperature-driven enzyme selection shapes microbiome thermal plasticity and that thermal variability finely tunes such processes and should be considered alongside MAT in forecasting microbial community thermal response
Project description:Sulfur metabolism in the deep-sea cold seep has been mentioned to have an important contribution to the biogeochemical cycle of sulfur in previous studies. And sulfate reducing bacteria have also been considered to be a dominant microbial population in the deep-sea cold seep and play a crucial role in this process. However, most of sulfate reducing bacteria from cold seep still cannot be purely cultured under laboratory conditions, therefore the actual sulfur metabolism pathways in sulfate reducing bacteria from the deep-sea cold seep have remained unclear. Here, we isolate and pure culture a typical sulfate reducing bacterium Desulfovibrio marinus CS1 from the sediment sample of the deep-sea cold seep in the South China Sea, which provides a probability to understand the sulfur metabolism in the cold seep.
Project description:Accurate description of a microbial community is an important first step in understanding the role of its components in ecosystem function. A method for surveying microbial communities termed Serial Analysis of Ribosomal DNA (SARD) is described here. Through a series of molecular cloning steps, short DNA sequence tags are recovered from the fifth variable (V5) region of the prokaryotic 16S rRNA gene from microbial communities. These tags are ligated to form concatemers comprised of 20-40 tags which are cloned and identified by DNA sequencing. Four agricultural soil samples were profiled with SARD to assess the method’s utility. A total of 37,008 SARD tags comprising 3,127 unique sequences were identified. Comparison of duplicate profiles from one soil genomic DNA preparation revealed the method was highly reproducible. The large numbers of singleton tags together with non-parametric richness estimates indicated a significant amount of sequence tag diversity remained undetected with this level of sampling. The abundance classes of the observed tags were scale-free and conformed to a power law distribution. Numerically, the majority of the total tags observed belonged to abundance classes that were each present at less than 1% of the community. Over 99% of the unique tags individually made up less than 1% of the community. Therefore, from either numerical or diversity standpoints, low abundant taxa comprised a significant proportion of the microbial communities examined and could potentially make a large contribution to ecosystem function. SARD may provide a means to explore the ecological role of these rare members of microbial communities in qualitative and quantitative terms. Keywords: SARD profiles, culture-independent study, microbial community survey, microbial census
2007-06-15 | GSE8119 | GEO
Project description:Microbial diversity of food products
Project description:Background: More than 100 million Americans are living with metabolic syndrome, increasing their propensity to develop heart disease– the leading cause of death worldwide. A major contributing factor to this epidemic is caloric excess, often a result of consuming low cost, high calorie fast food. Several recent seminal studies have demonstrated the pivotal role of gut microbes contributing to cardiovascular disease in a diet-dependent manner. Given the central contributions of diet and gut microbiota to cardiometabolic disease, we hypothesized that novel microbial metabolites originating postprandially after fast food consumption may contribute to cardiometabolic disease progression. Methods: To test this hypothesis, we gave conventionally raised or antibiotic-treated mice a single oral gavage of a fast food slurry or a control rodent chow diet slurry and sacrificed the mice four hours later. Here, we coupled untargeted metabolomics in portal and peripheral blood, 16S rRNA gene sequencing, targeted liver metabolomics, and host liver RNA sequencing to identify novel fast food-derived microbial metabolites. Results: We successfully identified several metabolites that were enriched in portal blood, increased by fast food feeding, and essentially absent in antibiotic-treated mice. Strikingly, just four hours post-gavage, we found that fast food consumption resulted in rapid reorganization of the gut microbial community structure and drastically altered hepatic gene expression. Importantly, diet-driven reshaping of the microbiome and liver transcriptome was dependent on a non-antibiotic ablated gut microbial community. Conclusions: Collectively, these data suggest that single fast food meal is sufficient to reshape the gut microbial community yielding a unique signature of food-derived microbial metabolites. Future studies are warranted to determine if these metabolites are causally linked to cardiometabolic disease.
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.
Project description:Intense bottom-ice algal blooms, often dominated by diatoms, are an important source of food for grazers, organic matter for export during sea ice melt, and dissolved organic carbon. Sea-ice diatoms have a number of adaptations, including accumulation of compatible solutes, that allow them to inhabit this highly variable environment characterized by extremes in temperature, salinity, and light. In addition to protecting them from extreme conditions, these compounds present a labile, nutrient-rich source of organic matter and include precursors to climate active compounds (e.g. DMS), which are likely regulated with environmental change. Here, intracellular concentrations of 45 metabolites were quantified in three sea-ice diatom species and were compared to two temperate diatom species, with a focus on compatible solutes and free amino acid pools. There was a large diversity of metabolite concentrations between diatoms with no clear pattern identifiable for sea-ice species. Concentrations of some compatible solutes (isethionic acid, homarine) approached 1 M in the sea-ice diatoms, Fragilariopsis cylindrus and Navicula cf. perminuta, but not in the larger sea-ice diatom, Nitzschia lecointei or in the temperate diatom species. The differential use of compatible solutes in sea-ice diatoms suggest different adaptive strategies and highlights which small organic compounds may be important in polar biogeochemical cycles.