Project description:The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis1 in a tissue, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we find that large peritoneal macrophages (LPMs) display impaired efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated, and germ-free mice in vivo. Mechanistically, the microbiota-derived short-chain fatty acid butyrate directly boosted efferocytosis efficiency/capacity in mouse and human macrophages, and rescued ABX-induced LPM efferocytosis defects in vivo. Bulk mRNA sequencing of butyrate-treated macrophages in vitro and single cell mRNA sequencing of LPMs isolated from ABX-treated and butyrate-rescued mice revealed regulation of efferocytosis-supportive transcriptional programs. Specifically, we found that the efferocytosis receptor T-cell immunoglobulin and mucin domain containing 4 (TIM-4, Timd4) was downregulated in LPMs of ABX-treated mice but rescued by oral butyrate and TIM-4 was required for the butyrate-induced enhancement of LPM efferocytosis capacity. LPM efferocytosis was impaired beyond withdrawal of ABX and ABX-treated mice exhibited significantly worse disease in a mouse model of lupus. Our results demonstrate that homeostatic efferocytosis relies on distal metabolic signals and suggest that defective homeostatic efferocytosis may explain link between ABX use and inflammatory disease.
Project description:The clearance of apoptotic cells, termed efferocytosis, is essential for tissue homeostasis and prevention of autoimmunity. Although past studies have elucidated local molecular signals that regulate homeostatic efferocytosis1 in a tissue, whether signals arising distally also regulate homeostatic efferocytosis remains elusive. Here, we find that large peritoneal macrophages (LPMs) display impaired efferocytosis in broad-spectrum antibiotics (ABX)-treated, vancomycin-treated, and germ-free mice in vivo. Mechanistically, the microbiota-derived short-chain fatty acid butyrate directly boosted efferocytosis efficiency/capacity in mouse and human macrophages, and rescued ABX-induced LPM efferocytosis defects in vivo. Bulk mRNA sequencing of butyrate-treated macrophages in vitro and single cell mRNA sequencing of LPMs isolated from ABX-treated and butyrate-rescued mice revealed regulation of efferocytosis-supportive transcriptional programs. Specifically, we found that the efferocytosis receptor T-cell immunoglobulin and mucin domain containing 4 (TIM-4, Timd4) was downregulated in LPMs of ABX-treated mice but rescued by oral butyrate and TIM-4 was required for the butyrate-induced enhancement of LPM efferocytosis capacity. LPM efferocytosis was impaired beyond withdrawal of ABX and ABX-treated mice exhibited significantly worse disease in a mouse model of lupus. Our results demonstrate that homeostatic efferocytosis relies on distal metabolic signals and suggest that defective homeostatic efferocytosis may explain link between ABX use and inflammatory disease.
Project description:For a myriad of different reasons most antimicrobial peptides (AMPs) have failed to reach clinical application. Different AMPs have different shortcomings including but not limited to toxicity issues, potency, limited spectrum of activity, or reduced activity in situ. We synthesized several cationic peptide mimics, main-chain cationic polyimidazoliums (PIMs), and discovered that, although select PIMs show little acute mammalian cell toxicity, they are potent broad-spectrum antibiotics with activity against even pan-antibiotic-resistant gram-positive and gram-negative bacteria, and mycobacteria. We selected PIM1, a particularly potent PIM, for mechanistic studies. Our experiments indicate PIM1 binds bacterial cell membranes by hydrophobic and electrostatic interactions, enters cells, and ultimately kills bacteria. Unlike cationic AMPs, such as colistin (CST), PIM1 does not permeabilize cell membranes. We show that a membrane electric potential is required for PIM1 activity. In laboratory evolution experiments with the gram-positive Staphylococcus aureus we obtained PIM1-resistant isolates most of which had menaquinone mutations, and we found that a site-directed menaquinone mutation also conferred PIM1 resistance. In similar experiments with the gram-negative pathogen Pseudomonas aeruginosa, PIM1-resistant mutants did not emerge. Although PIM1 was efficacious as a topical agent, intraperitoneal administration of PIM1 in mice showed some toxicity. We synthesized a PIM1 derivative, PIM1D, which is less hydrophobic than PIM1. PIM1D did not show evidence of toxicity but retained antibacterial activity and showed efficacy in murine sepsis infections. Our evidence indicates the PIMs have potential as candidates for development of new drugs for treatment of pan-resistant bacterial infections.
Project description:Apoptotic cell clearance (efferocytosis), a process essential for organismal homeostasis, is performed by phagocytes that inhabit a wide range of environments, including physiologic hypoxia. Here, we find macrophages, the predominant tissue-resident phagocyte, display enhanced efferocytosis under chronic hypoxia, characterized by increased internalization and accelerated degradation of apoptotic cells. Analysis of mRNA and protein programs revealed that chronic hypoxia induces two distinct but complimentary states in macrophages. The first, ‘primed’ state consists of concomitant induction of transcriptional and translational programs broadly associated with metabolism in apoptotic cell-naïve macrophages that persist during efferocytosis. The second, ‘poised’ state consists of transcription, but not translation, of phagocyte function programs in apoptotic cell-naïve macrophages that are subsequently translated during efferocytosis. We discovered that one such primed state consists of the efficient flux of glucose into a noncanonical pentose phosphate pathway (PPP) loop, whereby PPP-derived intermediates cycle back through the PPP to enhance production of NADPH. Mechanistically, we found that PPP-derived NADPH directly supports enhanced efferocytosis under chronic hypoxia via its role in phagolysosomal maturation, while simultaneously maintaining cellular redox homeostasis. Thus, macrophages adapt to chronic hypoxia by adopting states that both support cell fitness and ensure ability to rapidly and safely perform essential homeostatic functions.
Project description:Inflammation is a physiopathological process triggered by infection or tissue damage. Immune system initiates coordinated sequential steps in response to these danger signals. Once the threat has been contained inflammation has to be subsequently shut down. Inflammation resolution is initiated by the reprogramming of pro-inflammatory macrophages toward a pro-resolving profile. This reprogramming is induced in particular by the non-phlogistic engulfment of apoptotic cells, mostly apoptotic neutrophils, a process called efferocytosis. As a matter of fact, macrophages are an essential linchpin regulating both inflammation triggering and sustaining and inflammation resolution. This duality can be achieved through the tremendous plasticity of these innate immune cells. Indeed, depending on microenvironmental signals (cytokines, efferocytosis, growth factors…) macrophages can adopt numerous diverse and sometimes antagonistic phenotypes. The mechanisms governing these transitions remain relatively scattered especially in human. With this project we propose to explore the mechanisms involved in human macrophage reprogramming toward a pro-resolving profile after efferocytosis. The stakes are high due to the estimated prevalence of chronic inflammatory diseases in Western society is 5 to 7%. Chronic inflammation is a burden to patient due to life-long debilitating illness and increased mortality and is also a burden to society due to high costs for therapy and care. Finding new therapies to limit chronic inflammation establishment and persistence is thus a highly valuable goal.
Project description:Defects in apoptotic cell clearance, or efferocytosis, can cause inflammatory diseases and prevent tissue repair due in part, to a key role of efferocytosis in inducing a pro-repair transcriptional program in phagocytic cells like macrophages. While the cellular machinery and metabolic pathways involved in efferocytosis have been characterized, the precise efferocytic response of macrophages is dependent on the identity and macromolecular cues of apoptotic cells, and the complex tissue microenvironment in which efferocytosis occurs. Here, we find that macrophages undergoing active efferocytosis in mid-stage mouse skin wounds in vivo display a pro-repair gene program, while efferocytosis of apoptotic skin fibroblasts in vitro induces an immature/inflammatory transcription response. These data provide a resource for understanding how the skin wound niche influences macrophage efferocytosis and will be useful for future investigations that define the role of efferocytosis during tissue repair
Project description:Poor wound healing due to dysregulated tissue repair responses can exacerbate and prolong disease. Successful tissue repair is critically dependent on the timely clearance of apoptotic cells by macrophages in a process termed efferocytosis. Mechanisms and factors that link these two fundamental processes are therefore of great interest. Herein, we observed that a subset of 12-lipoxygenase (ALOX12)-expressing macrophages upregulate the production of host protective autacoids termed maresin conjugates in tissue regeneration (MCTR) during efferocytosis. MCTRs in turn play autocrine and paracrine functions in enhancing the ability of both ALOX12-positive and surrounding ALOX12-negative macrophages to uptake apoptotic cells. These effects of ALOX12-positive macrophages and MCTRs in regulating apoptotic cells clearance was also observed at sites of high apoptotic cell burden in mouse and flatworm models, as the formation of these mediators was upregulated and abrogation of related ALOX activity in mice reduced the ability of macrophages to clear apoptotic cells. Furthermore, add-back of MCTRs rapidly enhanced the efferocytosis capability of macrophages in mice and planarian flatworms. Mechanistic studies in macrophages revealed that MCTRs modulated Rac1 signalling and glycolytic metabolism, two pathways crucial for effective efferocytosis, and enhanced efferocytosis-induced WNT ligand production. Inhibition of Rac1 abrogated the ability of MCTRs to enhance glucose uptake and efferocytosis in vitro, while inhibiting either Rac1, glycolysis, or WNT ligand production prevented MCTR-mediated enhancement of apoptotic cell clearance and tissue regeneration. Taken together, our findings identify a central role for ALOX12-expressing macrophages in the regulation of efferocytosis and tissue repair via the local formation of MCTRs.