Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen. ChIP-Seq using an antibody to ELF5, in T47D breast carcinoma cell lines
Project description:About 15-20% of all breast cancers are triple negative breast cancers, which are often highly aggressive. We performed global quantitative phosphotyrosine profiling of a large panel of triple negative breast cancer cell lines using high resolution Fourier transform mass spectrometry. Our study identified 1,903 tyrosine-phosphorylated peptides derived from 969 proteins. Heterogeneous activation of tyrosine kinases was observed in triple negative breast cancer derived cell lines.
Project description:As part of the RATHER (RAtional THERapy for breast cancer: individualized treatment for difficult-to-treat breast cancer subtypes) consortium, expression profiling of 144 untreated primary invasive lobular carcinoma (ILC) breast cancer tissues and 15 ILC cell lines was performed using microarray. Gene expression profiling of 144 ILC breast cancers and 15 ILC cell lines
Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen.
Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen.
Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen.
Project description:The ets transcription factor ELF5 specifies the differentiation of mammary progenitor cells to establish the milk-secreting lineage. ER- and poor prognosis basal breast cancers arise from this progenitor cell and these cancers express high levels of Elf5. Knockdown of ELF5 expression in basal breast cancer cell lines, or forced expression in luminal breast cancer cell lines, resulted in reduced cell proliferation. Transcript profiling and chromatin immunoprecipitation revealed that the transcriptional activity of ELF5 specified the gene expression patterns that distinguish basal from luminal breast cancer, including suppression of FOXA1, GATA3 and ER, key estrogen-action genes. Tamoxifen treatment of luminal MCF7 cells upregulated Elf5 expression and cells that acquired resistance to Tamoxifen became dependent on ELF5 for proliferation. ELF5 is a regulator of breast cancer cell proliferation, transcriptionally specifies the basal molecular subtype and is utilised by ER+ breast cancer cells to escape proliferative arrest caused by Tamoxifen. Elf5 was knocked down via siRNA in basal HCC1937 cell lines, in triplicate. Elf5 was induced in luminal T47D and MCF7 cell lines via a doxycycline inducible expression vector, in duplicate.
Project description:The BAZ2B gene belongs to the bromodomain gene family. The proteins encoded by members of this gene family are important components of chromatin remodelling complexes and have a potential role in transcriptional activation. However, the biological significance of BAZ2B in pan-cancer is unknown. In this study, we comprehensively analysed the functional characteristics of BAZ2B in human cancers and its role in immune response using The Cancer Genome Atlas (TCGA), Gene Expression Album (GEO), Genotype-Tissue Expression (GTEx) databases, and tools such as TIMER 2.0 and cBioPortal, and found that BAZ2B is down-regulated in certain cancers, and its overexpression is associated with patients’ poor prognosis, such as bladder, breast and endometrial cancers. In addition, we demonstrated for the first time that BAZ2B was under-expressed in breast cancer cells and promoted proliferation, migration and apoptosis of breast cancer cells.