Project description:Bats are natural hosts for a wide diversity of viruses. While many of these viruses are highly pathogenic in humans, most do not appear to cause major symptoms in bats. These modern bat-specific characteristics are the result of past virus-host (co)evolution and virus-driven host adaptations. Innate immunity is the first line of defense against viruses in mammals, we aim at characterizing bat innate immunity in response to viruses. Using genome-wide and gene candidate evolutionary analyses, we found that many bat antiviral genes have undergone multiple duplication events in a lineage-specific manner, specifically in the Myotis bat lineage. We focus on Myotis yumanensis as a model in the Myotis lineage. We performed transcriptomic analyses and observed the upregulation of most mammalian genes implicated in the different steps of the innate immune response from sensing to interferon-stimulated genes (ISGs), showing the conservation of the core innate immunity. Our study will contribute to identifying adaptations that shaped bat innate immunity. These adaptations may contribute to the bat-virus specificity and influence viral emergence to another mammalian host
Project description:The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.