Project description:Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, structural genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P. chrysogenum. Growth of the engineered strain in the presence of the side-chain precursor adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA- producing strain and a strain lacking key genes in β-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. In chemostat cultures of both strains, adipic acid served as an additional carbon source. Transcriptome analysis supported an earlier proposal, based on 13C-labelling studies, that adipic acid catabolism in P. chrysogenum occurs via β-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal β-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses. As strain improvement programmes lead to increased specific productivity and yields, a deeper understanding of these stress responses is likely to be important to also achieve high ad7-ACCCA titers with engineered strains of P. chrysogenum.
Project description:The multi-component global regulator Velvet complex has been identified as a key regulator of secondary metabolite production in Aspergillus and Penicillium species. Previous work indicated a massive impact of PcvelA and PclaeA deletions, two key components of the Velvet complex, on penicillin production in prolonged batch cultures of P. chrysogenum, as well as substantial changes in transcriptome. The present study investigates the impact of these mutations on product formation and genome-wide transcript profiles under glucose-limited, aerobic conditions, relevant for industrial production of ?-lactams. The gene-deletion cassette for PcvelA or PclaeA was integrated in a hdfA mutant of the penicillin high-producing strain P. chrysogenum DS17690. Predicted amino acid sequences of PcVelA and PcLaeA in this strain were identical to those in its ancestor Wisconsin54-1255. Controls were performed to rule out transformation-associated loss of penicillin-biosynthesis clusters which, in preliminary studies, led to a massive reduction of penicillin production in a PcvelA deletion mutant. The correct PcvelA and PclaeA deletion strains revealed a significant (up to 30 %) reduction of penicillin-G productivity relative to the reference strain, which is a much smaller reduction than previously reported for prolonged batch cultures of P. chrysogenum strains. Chemostat-based transcriptome analysis yielded only 23 genes with a consistent response in the PcvelA? and PclaeA? mutants when grown in the absence of the penicillin-G side-chain precursor phenylacetic acid. 11 of these genes belonged to two small gene clusters (with 5 and 6 genes, respectively), one of which contains a gene with high homology to an aristolochene synthase. These results provide a clear caveat that the impact of the Velvet complex on secondary metabolism in filamentous fungi may be strongly context dependent Previous studies on the impact of the Velvet complex in P. chrysogenum were performed in prolonged batch cultures. Time course analysis revealed that the impact of PcvelA and PclaeA mutations was most pronounced after prolonged incubation {Hoff, 2010 6 /id}, but the physiological status of these cultures was not precisely defined. Industrial production of ?-lactam antibiotics is performed in sugar-limited, aerobic fed-batch cultures {Menezes, 1994 76 /id}. The aim of the present study is to investigate the impact of the Velvet complex on physiology, penicilllin production and transcriptional regulation under industrially relevant conditions. To this end, we studied the impact of PcvelA and PclaeA deletions in aerobic, glucose-limited chemostat cultures of the penicillin high-producing strain P. chrysogenum DS17690.
Project description:Industrial production of penicillin G by Penicillium chrysogenum requires medium supplementation with the side chain precursor phenylacetate. However, P.chrysogenum grown in presence of phenylalanine as sole nitrogen source formed detectable extracellular amounts of phenylacetate and penicillin G. To get more insights in the metabolism implicated, chemostat-cultivation in presence of 13C9-phenylalanine were carried out. Quantification and modeling of the labeled metabolite pools indicated that phenylalanine was i) incorporated in nascent protein, ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation and iii) oxidized into tyrosine and subsequently assimilated in the homogentisate pathway. Comparative transcriptome analysis of phenylalanine and (NH4)2SO4 grown P.chrysogenum cultures enabled to identify two putative 2-oxo acid decarboxylases Pc13g9300 and Pc18g01490. Both cDNAs were cloned and expressed in the decarboxylase-free Saccharomyces cerevisiae CEN.PK711-7C (pdc1delta, 5delta, 6delta, aro10delta, thi3delta) strain that has lost the ability to grow on glucose as sole carbon source or on phenylalanine as sole nitrogen source. Only Pc13g09300 was able to restore growth on glucose and on phenylalanine, demonstrating that this gene encodes a dual substrate pyruvate, phenylpyruvate decarboxylase. This newly identified thiamine-dependent 2-oxo acid decarboxylase provides clues to explain the formation of phenylacetate via an Ehrlich-like pathway in P.chrysogenum. Penicillium chrysogenum DS17690 was grown in aerobic glucose limited chemostat at 25oC, pH 6.5 and a dilution rate of 0.03h-1 with either amonia or phenylalanine
Project description:The recent discovery of a velvet complex containing several regulators of secondary metabolism in the model fungus Aspergillus nidulans raises the question whether similar type complexes direct fungal development in genera other than Aspergillus. Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, that we have named PcvelA and PclaeA. Data from array analysis using a ?PcvelA deletion strain indicate a significant role of PcvelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and HPLC quantifications of penicillin titres clearly show that both PcvelA and PclaeA play a major role in penicillin biosynthesis. Both regulators are further involved in different and distinct developmental processes. While PcvelA deletion leads to light independent conidial formation, dichotomous branching of hyphae and pellet formation in shaking cultures, a ?PclaeA strain shows a severe impairment in conidiophore formation in both the light and dark. Bimolecular fluorescence complementation assays finally provide evidence for a velvet-like complex in Penicillium chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators within filamentous ascomycetes. Transcriptomes of PcvelA- and PclaeA- deletion mutants were compared with expression data from recipient strain deltaPcku70 and reference strain P2niaD18 as a control
Project description:The recent discovery of a velvet complex containing several regulators of secondary metabolism in the model fungus Aspergillus nidulans raises the question whether similar type complexes direct fungal development in genera other than Aspergillus. Penicillium chrysogenum is the industrial producer of the antibiotic penicillin, whose biosynthetic regulation is barely understood. Here we provide a functional analysis of two major homologues of the velvet complex in P. chrysogenum, that we have named PcvelA and PclaeA. Data from array analysis using a ΔPcvelA deletion strain indicate a significant role of PcvelA on the expression of biosynthesis and developmental genes, including PclaeA. Northern hybridization and HPLC quantifications of penicillin titres clearly show that both PcvelA and PclaeA play a major role in penicillin biosynthesis. Both regulators are further involved in different and distinct developmental processes. While PcvelA deletion leads to light independent conidial formation, dichotomous branching of hyphae and pellet formation in shaking cultures, a ΔPclaeA strain shows a severe impairment in conidiophore formation in both the light and dark. Bimolecular fluorescence complementation assays finally provide evidence for a velvet-like complex in Penicillium chrysogenum, with structurally conserved components that have distinct developmental roles, illustrating the functional plasticity of these regulators within filamentous ascomycetes.
Project description:The multi-component global regulator Velvet complex has been identified as a key regulator of secondary metabolite production in Aspergillus and Penicillium species. Previous work indicated a massive impact of PcvelA and PclaeA deletions, two key components of the Velvet complex, on penicillin production in prolonged batch cultures of P. chrysogenum, as well as substantial changes in transcriptome. The present study investigates the impact of these mutations on product formation and genome-wide transcript profiles under glucose-limited, aerobic conditions, relevant for industrial production of β-lactams. The gene-deletion cassette for PcvelA or PclaeA was integrated in a hdfA mutant of the penicillin high-producing strain P. chrysogenum DS17690. Predicted amino acid sequences of PcVelA and PcLaeA in this strain were identical to those in its ancestor Wisconsin54-1255. Controls were performed to rule out transformation-associated loss of penicillin-biosynthesis clusters which, in preliminary studies, led to a massive reduction of penicillin production in a PcvelA deletion mutant. The correct PcvelA and PclaeA deletion strains revealed a significant (up to 30 %) reduction of penicillin-G productivity relative to the reference strain, which is a much smaller reduction than previously reported for prolonged batch cultures of P. chrysogenum strains. Chemostat-based transcriptome analysis yielded only 23 genes with a consistent response in the PcvelAΔ and PclaeAΔ mutants when grown in the absence of the penicillin-G side-chain precursor phenylacetic acid. 11 of these genes belonged to two small gene clusters (with 5 and 6 genes, respectively), one of which contains a gene with high homology to an aristolochene synthase. These results provide a clear caveat that the impact of the Velvet complex on secondary metabolism in filamentous fungi may be strongly context dependent
Project description:In studies on beta-lactam production by Penicillium chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillin-G production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillin-G high-producing strain without a functional penicillin-biosynthesis gene cluster (pcbAB-pcbC-penDE) was constructed. The copy number of this cluster was first reduced to one via spontaneous recombination. The remaining copy was removed by targeted deletion, thereby completely abolishing beta-lactam biosynthesis. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. A low rate of penicillin-G-independent PAA consumption indicated activity of a PAA-degrading pathway. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillin-G producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on transcriptional regulation.