ABSTRACT: Whole genome sequencing of Mycobacterium tuberculosis as part of The Institute of Clinical Pathology and Medical Research - NSW Health Pathology surveillance activities in New South Wales, Australia
Project description:Whole genome sequencing of Salmonella species as part of The Institute of Clinical Pathology and Medical Research - NSW Health Pathology surveillance activities in New South Wales, Australia
Project description:Whole genome sequencing of Shigella species as part of The Institute of Clinical Pathology and Medical Research - NSW Health Pathology surveillance activities in New South Wales, Australia
Project description:We used single-cell sequencing data and imaging to investigate Eukaryotic plankton from environmental marine samples collected from Coogee, NSW, Australia.
Project description:Introduction: Early life is characterized by heightened susceptibility to infections and is recognized as a major determinant of the immune system development and the overall health for the entire human lifespan. However, our knowledge of the development of the neonatal immune system is incomplete, limiting the development of novel preventative and therapeutic strategies, especially in newborns. To gain insight into the early immune system development and plasma proteome ontogeny, the Expanded Program on Immunization Consortium (EPIC) led by Professor Ofer Levy MD at Boston Children’s Hospital, Harvard Medical School and Tobias R. Kollmann Telethon Kids Institute, Australia as part of the Human Immunological Project Consortium (HIPC), established two independent cohorts of plasma from healthy newborns born by vaginal delivery during the first week of life. Methods: Blood samples were collected from 30 newborns in The Gambia (Medical Research Council Unit, The Gambia) at the day of birth (day of life, DOL 0) and at one of the follow-up visits on DOL1, DOL3, or DOL7. A similar validation cohort was collected in Papua New Guinea (PNG) (Institute for Medical Research, Papua New Guinea, Australasian) from 19 newborns. The plasma proteome was characterized by LC-MS on a Q Exactive using the proven and published plasma proteomics platform developed in the Steen Laboratory, led by Dr Hanno Steen, Director of Proteomics at Boston Children’s Hospital, Harvard Medical School, employing only microliter of plasma prepared in a 96-well plate format. The data was analyzed with MaxQuant. Results: We characterized 385 blood-plasma proteins. Utilizing the paired study design, we identified consistent changes related to ontogeny and cellular growth pathways in the blood-plasma proteome. Conclusion: This dataset allows for studying the early ontogeny of the plasma proteome, and in extension the early immune system development, in two independent healthy cohorts. Characterization of the plasma proteome may provide novel insight into new approaches to prevent, detect, and treat infectious diseases. Acknowledgements: We would like to thank all the participating families and all past and current members of the EPIC-HIPC, and the Steen Laboratory, without whom this study would not be possible. A special recognition goes to the teams who established the unique cohorts in The Gambia, by Professor Beate Kampmann and Dr Olubukola T. Idoko at The Gambia at the London School of Hygiene and Tropical Medicine, The Gambia, and in PNG, by Anita H.J. van der Biggelaar and William S. Pomat at Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia Perth, Australia.
Project description:Alcohol consumption is known to lead to gene expression changes in the brain. After performing gene co-expression network analysis (WGCNA) of genome-wide mRNA and microRNA expressions in the Nucleus Accumbens (NAc) from subjects with alcohol dependence (AD) and matched controls six mRNA and three miRNA modules significantly correlated with AD after Bonferroni correction (adj. p? 0.05) were identified. Cell-type-specific transcriptome analysis revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four were enriched for astrocyte and microglial specific marker genes and were upregulated in AD. Using gene set enrichment analysis, the neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling, while the glial-specific modules were enriched mostly for genes involved in processes related to immune functions, i.e. reactome cytokine signaling in immune system (all adj. p? 0.05). In the mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected miRNAs’ biological functions, the correlation analyses between mRNA and miRNA hub genes revealed a significantly higher number of positive than negative correlations (chi-square p? 0.0001). At FDR? 0.1, integration of the mRNA and miRNA hubs genes expression with genome-wide genotypic data identified 591 cis-eQTLs and 62 cis-eQTLs for the mRNA and miRNA hubs, respectively. Adjusting for the number of tests, the mRNA cis-eQTLs were significantly enriched for AD GWAS signals in the Collaborative Study on Genetics of Alcohol (COGA) sample (adj. p=0.024), providing a novel biological role for these association signals. In conclusion, our study identified coordinated mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. Tissue samples were received from the Australian Brain Donor Programs New South Wales Tissue Resource Centre, which is supported by The University of Sydney, National Health and Medical Research Council of Australia, Schizophrenia Research Institute, National Institute of Alcohol Abuse and Alcoholism, and the New South Wales Department of Health. Cases were excluded if they had an infectious disease (i.e. HIV/AIDS, hepatitis B or C, or Creutzfeldt-Jakob disease), an unsatisfactory agonal status determined from the circumstances surrounding the death, post-mortem delays >48 hours, or significant head injury. In addition to case status, age, sex, ethnicity, brain weight, brain pH, post-mortem interval (PMI), tissue hemisphere, clinical cause of death, blood toxicology at time of death, smoking status, neuropathology and liver pathology were also provided for each subject. MiRNA and mRNA expression in 18 matched case-control pairs (N=36) with sample RINs ?6 were assessed on the Affymetrix GeneChip® Human Genome U133A 2.0 (HG-U133A 2.0) and Affymetrix GeneChip miRNA 3.0 microarray.