Project description:Early-weaning-induced stress causes diarrhea, thereby reduces growth performance of piglets. Gut bacterial dysbiosis emerges as a leading cause of post-weaning diarrhea. The present study was aimed to investigate the effect of capsulized fecal microbiota transportation (FMT) on gut bacterial community, immune response and gut barrier function of weaned piglets. Thirty-two were randomly divided into two groups fed with basal diet for 21 days. Recipient group was inoculated orally with capsulized fecal microbiota of health Tibetan pig daily morning during whole period of trial, while control group was given orally empty capsule. The results showed that the F/G ratio, diarrhea ratio, diarrhea index, and histological damage score of recipient piglets were significantly decreased. FMT treatment also significantly increased the colon length of piglets. Furthermore, the relative abundances of Firmicutes, Euryarchaeota, Tenericutes, Lactobacillus, Methanobrevibacter and Sarcina in colon of recipient piglets were increased, and the relative abundances of Campylobacter, Proteobacteria, and Melainabacteria were significantly decreased compared with control group.
Project description:Bacillus licheniformis-fermented products (BLFP) are probiotics with antibacterial, antiviral, and anti-inflammatory properties that can improve growth performance. This study aimed to, firstly, compare the fecal microbiota of cats with chronic diarrhea (n = 8) with that of healthy cats (n = 4) from the same household using next-generation sequencing and, secondly, evaluate the effectiveness of oral administration of BLFP in relieving clinical signs and altering the intestinal microbiota in diarrheal cats. Six out of eight cats with diarrhea showed clinical improvement after BLFP administration for 7 days, and in two cats the stool condition was normal. A higher Firmicutes/Bacteroidetes ratio was noted in the feces of diarrheal cats without clinical improvement as compared with those in the healthy control group and in the diarrheal cats with clinical improvement after receiving BLFP. The phylum Bacteroidetes and class Bacteroidia decreased significantly in diarrheal cats regardless of BLFP administration. Blautia spp., Ruminococcus torques, and Ruminococcus gnavus, which belong to the Clostridium cluster XIVa and have been reported as beneficial to intestinal health, increased significantly in feces after BLFP treatment. Furthermore, a significant decrease in Clostridium perfringens was noted in diarrheal cats after BLFP administration. Overall, BLFP could be a potential probiotic to relieve gastrointestinal symptoms and improve fecal microbiota in cats with chronic diarrhea.
Project description:Iron is an essential metal for both animals and microbiota, and neonates and infants of humans and animals, in general, are at the risk of iron insufficient. However, excess dietary iron usually causes negative impacts on the host and microbiota. This study aimed to investigate over-loaded dietary iron supplementation on growth performance, the distribution pattern of iron in the gut lumen and the host, intestinal microbiota, and intestine gene expression profile of piglets. Sixty healthy weaning piglets were randomly assigned to six groups: fed with diets supplemented with ferrous sulfate monohydrate at the dose of 50ppm (Fe50 group), 100ppm (Fe100 group), 200ppm (Fe200 group), 500ppm (Fe500 group), and 800ppm (Fe800) for three weeks. The results indicated that increasing iron had no effects on growth performance but increased diarrheal risk and iron deposition in intestinal digesta, tissues of intestine and liver, and serum. High iron also reduced serum iron-binding capacity, apolipoprotein, and immunoglobin A. The RNA-sequencing analysis revealed that iron changed colonic gene expression profile, such as interferon gamma-signal transducer and activator of transcription 2 based anti-virus and bacteria gene network. Increasing iron also shifted cecal and colonic microbiota, such as reducing alpha diversity, Clostridiales and Lactobacillus reuteri, and increasing Lactobacillus and Lactobacillus amylovorus. Collectively, this study demonstrated that high dietary iron increased diarrheal incidence, changed intestinal immune response-associated gene expression, and shifts gut microbiota. The results would enhance our knowledge of iron effects on the gut and microbiome in piglets, and further contribute to understanding these aspects in humans.
Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:To investigate the effect of short distance transport on jejunal tissueof weaned piglets, We then performed gene expression profiling analysis using data obtained from RNA-seq in jejunal tissues of weaned piglets after transport and without transport
Project description:We used a DNA microarray chip covering 369 resistance types to investigate the relation of antibiotic resistance gene diversity with humans’ age. Metagenomic DNA from fecal samples of 123 healthy volunteers of four different age groups, i.e. pre-school Children (CH), School Children (SC), High School Students (HSS) and Adults (AD) were used for hybridization. The results showed that 80 different gene types were recovered from the 123 individuals gut microbiota, among which 25 were present in CH, 37 in SC, 58 in HSS and 72 in AD. Further analysis indicated that antibiotic resistance genes in groups of CH, SC and AD can be independently clustered, and those ones in group HSS are more divergent. The detailed analysis of antibiotic resistance genes in human gut is further described in the paper DNA microarray analysis reveals the antibiotic resistance gene diversity in human gut microbiota is age-related submitted to Sentific Reports
Project description:We illustrate an approach for integrating preclinical gnotobiotic animal models with human studies to understand the contributions of perturbed gut microbiota development to childhood undernutrition, and to identify new microbiota-directed therapeutic concepts/leads. Combining metabolomic and proteomic analyses of serially collected plasma samples with metagenomic analyses of serially collected fecal samples, we characterized the biological state of Bangladeshi children with severe acute malnutrition (SAM) as they transitioned to moderate acute malnutrition (MAM) after standard treatment. Gnotobiotic mice were subsequently colonized with a defined consortium of bacterial strains representing different stages of microbiota development in healthy children from Bangladesh. Administering different combinations of Bangladeshi complementary food ingredients to colonized mice and germ-free controls revealed diet-dependent changes in representation and metabolism of targeted weaning-phase strains, including accompanying increases in branched-chain amino acids, plus diet- and colonization-dependent augmentation of IGF-1/mTOR signaling. Host and microbial effects of microbiota-directed complementary food (MDCF) prototypes were subsequently examined in gnotobiotic mice colonized with post-SAM MAM microbiota and in gnotobiotic piglets colonized with a defined consortium of targeted age- and growth-discriminatory bacteria. Finally, ar andomized, double-blind study revealed a lead MDCF that affected the representation of targeted bacterial taxa and increased levels of biomarkers and mediators of growth, bone formation, neurodevelopment, and immune function.
Project description:The study investigated the impact of environment on the composition of the gut microbiota and mucosal immune development and function at gut surfaces in early and adult life. Piglets of similar genotype were reared in indoor and outdoor environments and in an experimental isolator facility. Mucosa-adherent microbial diversity in the pig ileum was characterized by sequence analysis of 16S rRNA gene libraries. Host-specific gene responses in gut ileal tissues to differences in microbial composition were investigated using Affymetrix microarray technology and Real-time PCR. Experiment Overall Design: Animals were reared on the sow at an outdoor or indoor facility. Additional piglets from the indoor facility were transferred to individual isolator units at 24 hours of age, and given a daily dose of antibiotic cocktail for the duration of the study. Piglets were weaned at day 28. From day 29 onwards, piglets were fed creep feed ad libitum. Ileal tissue samples were excised from N=6 piglets per group at day 5, 28 and 56.